미분계수의 정의 질문 있어요
게시글 주소: https://orbi.kr/00072998843
ㄴ이 참이 아닌이유가 뭔가요?
강의를 보아도 이해가 안가네요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
붐위기가 좋아서 술자리를 나간 거도 있지만 ㄹㅇ 술이 맛잇어서 많이 먹고 다녔는데...
-
97,98에서 99,100되려면 양치기 말고 없서요…ㅜㅜ ?
-
걍 기출보다 너무 어려운데 브릿지 같은거 풀다보면 진짜 사탐마려움 ㄹㅇ
-
스블 공부법 0
3등급 중반정도이고 세젤쉬랑 미친개념 끝내고 스블 듣는중인데 문제 거의 손도...
-
간단한 등차수열과 합의관계문제입니다! 심심할때풀어보세요
-
폭행을 당한건 알바가 아니라고
-
확통 뉴런 0
뉴런 사서 듣고 있긴 한데 한완수를 병행 하는 게 나을까요 아니면 뉴런 다 듣고...
-
옛날 교육과정에 일탈이론중에 갈등 이론도 있었나요?
-
하 이게 되네요
-
5모는 국수영탐 하루 날잡고 실전처럼 풀어봐야지
-
정시만으로 충분히 수험생을 평가할 수 있지 않나요
-
정시에 내신반영하는거에 찬성인 목소리가 오르비에도 은근 많네 30
수시로 대학간 사람 입장에서도 진짜 이해 안되는데 다른거 다 제쳐두고 내신을...
-
작년 국어 실모 1
작년 국어 실모를 풀고 싶은데 특히 문학은 ebs 연계 공부를 진짜 꼼꼼히 해놔서...
-
홍준용t 들으시는 분들 다들 프리즘 시작하셨나요 에센스랑 vol.3? 그거 둘중에...
-
설대 작년에 검정고시생들한테 bb 많이 줫다고 들엇는데 연대도 비교내신인가 그렇고 근들갑 아닌가
-
미리 좀 말해주지.. 이미 다 버렸는데 점점 확대되니까 되돌릴 수 없는 내신이 발목잡는게..ㅠㅠ
-
컷 못보나여?
-
목돈이없음
-
편의점가서 라면이라도 사먹을까 봤더니 쥐꼬리만한컵라면 하나에 2천원하길래 그냥...
-
요즘 고민하고 있는게 한두개가 아니다
-
난이도 개시발..
-
으하하다했다 0
지피티개추
-
찐범평 ㅋㅋ
-
내 풀이는 노트에 풀고 접근은 본교재에 필기하는 중인데 궁금쓰
-
DNA 상대량에 대한 정보 없이 가계도 그림에 나타난 표현형만으로 정보를 알아낼 수...
-
한계를 느낌
-
혹시 할짓 없는 오르비언은 저에게 조언을.. 제 논지는 모아보기에 다 있답니다
-
Everyday Grow, and Glow "매일 성장하며 빛날 당신" 안녕하세요,...
-
브라보브라보 0
마이 라잎 나의 인생아~~
-
??
-
오르비 잘자요-
-
이미지 신발끈(29강)vs양승진 상하코드 (53강) 상하코드는 유형 문제풀이까지...
-
시험공부포기함 13
아 몰라
-
안녕하세요 현역 고3 오르비언입니다. 현재 수학 공부 관련해서 여러분들께 상담...
-
나도 정시철에 최저만 맞추고 너네한테 공감 안해줄거야 이 나쁜놈들아
-
원래 평가원 급으로 좋고 어려운 지문들도 있는거죠?
-
너무 많이해서 더 이상 없겠지만 뉴비분들 오시면 잘해드릴 자신있습니다
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
특정 소수 국가에 특정 국가에 두개가 다른 뜻으로 볼 수 있나요? 특정 국가에 식량...
-
하.....
-
킬캠 나왔네 1
작년에 샀으니 올해는 유빈으로
-
Latex 수식 입력 하는 실력이 늘었군
-
패드에 푸는건 뭔가 느낌이 안 좋음 종이에다 푸는게 편함 그리거 눈이 너무 아픔
-
잡고있는다고 될 문제가 아닏네 하 머리아파
-
수업시간에 선생님이 영화 미드나잇 인 파리나 업사이드 다운 보여준 적 있으면 알려줘
-
정황상 독서연계는 자주 내는 소재 모니터링해서 싹 피한거같고 문학 연계는 중요도...
-
데이터 다 써서 화질구지 ㅈㅅ 내신시험지가 수특이랑 기싸움하는데 이거 답...
-
둘 중 더 나은 직업은? 한약사 장점 : 취업 잘 됨, 약국 개국 가능(처방전 취급...
미분계수의 정의가 아니니까요
저걸 쪼개서 미분계수의 정의로 바꿔보세여
0으로 수렴함
평균변화율의 극한
그냥 미분 생각하지 말고
좌우극한 나눠서 극한으로 보세요
정리하면
준식=좌미계+우미계
여서 -1+1=0으로 수렴해요
그렇다면 1이 아닌 2나 다른숫자로 수렴할경우면
값이 존재하지 않겠군요
아니죠
준식의 우극한과 좌극한이 모두 (좌미계+우미계)로 같은 값으로 나오는거이기 때문에
그 값이 1이던 2던 모두 존재하는거에요
극한값 존재라는건
결국 좌극한=우극한이란것만 만족하면 되는거니까요
아 뭔가 혼란스럽네요
절댓값이 붙은 미분계수는 성립할 수 없다고 알고 있는데
이건 그거와 무슨 차이점이 있는건지 알수 있을까요
오히려 좌우미계가 절댓값에 의해 달라져서 성립불가라고 알고있거든요
절댓값이 붙어있던 아니던
우선 주어진 극한값을 "해석"하는게 우선입니다
해석을 좌미계+우미계로 잘 했다면 그때 f(x)가 뭔지 신경써야하는거고
f(x)가 절댓값이 있다 하더라도 구해야 하는 값인 우미계와 좌미계 모두 존재하기 때문에
절댓값과는 무관하게 존재하는거에요
그냥 "1에서의 미분계수"가 구하는 값이었다면 존재하지 않는게 맞지만
"우"미분계수랑 "좌"미분계수를 구해야 하는건데 둘 다 존재하고 그 합은 일정하기 때문에 주어진 극한이 존재하는거에요
좌미계와 우미계의 값이 있다는 이해했습니다
다만 저 값들은 다르니 저 식의 저 식을 아우르는 극한값 전체는 없는거 아닌가요
답답하실거 충분히 이해갑니다ㅠ
뭐 저도 처음 배웠을 땐 헷갈렸으니까..
처음부터 천천히 다시 보시면 극한이 존재한다-->그 극한식의 좌극한과 우극한이 같다
인데 밑에도 잘 설명해주셨지만 극한식의 좌극한=f(x)의 좌미계+우미계,
우극한=f(x)의 좌미계+우미계
가 나와서 저 식에서 좌미계랑 우미계는 서로 달라도 본질적으로 극한의 좌극한과 우극한이 같은거에요
좌미계를 a, 우미계를 b라고 하면 a=/=b이지만 극한의 좌극한(a+b)=우극한(a+b) 인거죠
감사합니다 너무
정말 염치없는 말씀이지만 그래프로
이해할 수 있을까요?ㅠㅠ
감이 올락말락 하네요
지금 사진을 찍을수가 없어서 이번주 토요일에 다시 와서 봐드려도 될까요??
텍스트보다는 종이에 쓰는게 확실히 이해가 더 잘 될거 같긴 해서요!
정말로 감사합니다ㅠ
아 그렇다면 극한값이 곧 미분계수 인건가요
저 식에서만 본다면 극한값이 결국 미분계수의 합인거죠!
질문 투하에도 자세한 답변 감사합니다
그럼 마지막으로 질문이 있는데
ㄴ의 식은 좌미계와 우미계는 존재하나
미분계수는 없는 극한의 식인거죠?
식모양은 미분계수와 유사하게 생길뿐이고

그쵸그쵸 !저 극한식이랑 미분계수는 다른 식인거고
f(x)는 x=1에서 미분계수는 존재하지 않으나 극한값은 존재하는거 맞아요
이해 잘 하셨네요ㅋㅋㅋㅋ
고마워요 크게 배웁니다
혹시 수학성적이 어떻게 되는지 실례가 안되면 여쭐수있을까요

https://orbi.kr/00072959704뭐 이외에도 걍 제 글 모아보기 보다보면 수학 얘기 많이 해서...
솔직히 아직 고정100 수준은 아니라 언제 터질지 몰라서 좀 불안하긴 해여
저건 좌우미계 평균
처음 들어보는 말인데
좌우미계 평균이 뭐죠
미계의 평균?
좌미분계수와 우미분계수의 평균이요
그 평균이 뜻하는게 뭔질 모르겠습니다;;
잘못 쓰신듯요
저 극한식의 분모가 2h면 평균이 맞는 말인데
저 극한식이 분모가 h니까 좌우미계 합이라 해야함
아 그러네요 ㅋㅋ
개념에 혼동이 있으신거같은데 좌우미분계수가 달라서 성립이 안 되는건 '미분가능성'이고요 저 식은 미분가능성과 아무런 관련이 없습니다
간단하게 생각해서 2번은 미분계수의 정의가 아니기 때문에
그냥 f(x)=lx-1l에 1+h랑 1-h 대입해서 극한 계산하면...
미분계수는 하나의 정점과 하나의 동점이 있어야 합니다.
동점이 극한 처리를 통해 정점을 향해 무한히 다가갈 때, 동점과 정점의 기울기 = 동점과 정점의 기울기의 극한을 '정점에서의 접선의 기울기'로 볼 수 있고, 때문에 우리가 흔하게 알고 있는 미분계수의 정의로 세우는 식이 등장할 수 있습니다.
허나 해당 보기를 보시면, f(1+h) - f(1-h) / h =2 x { f(1+h) - f(1-h) / (1 +h) - (1 -h) } 로 고칠 수 있고, 고친 식을 보시면 정점 하나와 동점 하나의 기울기의 극한이 아닌, 동점 두 개의 기울기의 극한을 제시하고 있습니다. 즉 해당 식은 미분계수의 정의가 아닌 단순한 기울기의 극한으로 이해하셔야하며, h->0+로 갈 때나 h->0-로 갈 때 모두 동점 두 개끼리의 기울기의 극한은 0으로 수렴합니다( x축과 평행한 접선 느낌).
때문에 ㄴ 보기는 잘못되었습니다
그렇다면 저 식의 기울기는 거의 x축 모양에 가깝게 형성되어있겠군요
거의가 아니라 그냥 저 식 자체가 항등적으로 0입니다
미분계수의 정의를 다시 봐야 할 듯
저 케이스는 x=1에서 미분계수가 존재하지 않지만 분자가 모든 h!=1에 대해 항상 0이기 때문에 극한값이 0으로 존재하는 거고,
애초에 쟨 미분계수가 아닙니다