개형 관련해서는 치환하지 말라고 배웠는데
게시글 주소: https://orbi.kr/00072995901
치환해도 개형판단하는데 무리없는거 같은데 안됨?
운 좋게 인수분해가 돼서 저런 방식으로 개형 구하는게 가능한건가.
합성함수 나오면 속함수 치환을 해볼 수 있는데,
그래프 개형이 중요한 경우 속함수 치환이 불가하다고 배웠음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제가 현재 저장하고 있는 곡을 하나 맞추실 때마다 3000덕을 드리겠습니다....
-
찐따같이 모든면에서 어버버 댈거 아님 거의 엄마와 아들 아님? 그래 나도 안다고
-
겜 재밌어진다
-
???:어 그렇게 올려
-
호달달
-
최양진<<< EBS 강사가 그냥 사설 강사 압도함 임정환 이지영 김종익 다...
-
뭐다노 0
한화 우천취소라 심심
-
일하는것과 공부하는게 아예 전혀 다른활동이라 그런것 같아요 이걸 하루에 각각 하는게...
-
빌런되고싶음 14
어떤 분탕을 치면 빌런될수있나여?
-
개좆같다 씨발!!!! 시험을 어렵게 낸다고 말하던가 아님 짚어주던가 토론 수행한다고...
-
뭐지
-
재수생이 오전을 다 날리면 안되지
-
머먹고 그리 귀여운지
-
https://orbi.kr/00068851681/ 쓸 당시에 좋아요수 2라서...
-
ㄴㅇㅅ
-
반수생 연애 2
저 정말 힘들어서 여기에 조언을 구하고자 합니다. 제가 2월부터 사귄 여자친구가...
그림 삐꾸난건 ㅈㅅ 필통을 안가져와서 수정을 못함...
치환하면 개형이 달라짐
y=sinx에서 sinx=t 라고 하면 y=t가 댐
그건 맞는데
저 경우에서는 치환해서 개형 판단하는게 가능하잖음...
쓴게 잘 이해가 안되는데 도함수에서 cos를 치환해서 생각하신건가요?
결국 도함수의 개형은 뭉개져서 판단이 안되고
도함수의 값(부호)만 남아서 원함수 개형 추정에는 문제가 없었다 가 된거 아님?
네네
정확해요
저게 친구한테 물어보니까
정확한 증감량을 알 수가 없다는데
주기 2파이인거 고려하면 증감량 딱딱 맞아떨어져서요
님이 생각하신게 아마 맞을걸요.
도함수를 치환했으니 도함수의 값만 남음 -> 원함수의 극대 극소는 알 수 있음
도함수의 극대 극소는 알수없음 -> 원함수의 변곡점은 알 수 없음
단 이 함수의 경우 cos함수로 이루어진 함수라 주기와 대칭성을 이용해 일부 정보를 더 끌어올 수 있다.
오 깔끔한 답변 감사합니다. 추가 정보가 있으면 치환해도 되긴 하는군요.