[칼럼] n차함수를 넘나드는 비율관계
게시글 주소: https://orbi.kr/00072909034
다항함수의 비율관계에 대해서는 다들 익숙하실 거예요.
그런데 n차함수의 비율관계를 n+1차함수에서도 사용할 수 있다는 사실, 알고 계셨나요?
삼차함수 f(x) 위의 x좌표가 a인 점과 (단, a는 상수) x좌표가 t인 점을 이은 직선의 방정식은 y=[{f(t)-f(a)}÷(t-a)](x-a)+f(a)이고 이 직선의 기울기 m(t)={f(t)-f(a)}÷(t-a)이에요.
t에 대한 식 {f(t)-f(a)}는 (t-a)를 인수로 갖는 삼차식이기에 m(t)는 이차식으로 나타낼 수 있어요.
f(x)=M(x-a)(x-b)(x-c)+f(a)라면 m(t)=M(t-b)(t-c)인 거예요. (단, t=a일 때는 m(t)=f'(a))
이 공식 m(t)=M(t-b)(t-c) 자체만으로도 정말 유용하게 쓰일 수 있기에 암기해 두어도 좋아요.
거리곱을 활용한다면 두 점을 이은 직선의 기울기를 구할 때 식을 쓸 필요도 없겠죠.
m(t)가 이차식 형태로 나타난다는 점을 이용하면 이차함수의 성질을 삼차함수인 f(x)에 적용할 수 있어요.
왼쪽 그림상 (a, 0)을 지나고 x=p에서 삼차함수에 접하는 직선은 빨간색으로, x=a에서 삼차함수에 접하는 직선은 파란색으로 나타내 볼게요.
왼쪽 그림상 빨간색 직선의 기울기는 오른쪽 그림상 빨간색 직선의 y좌표로, 왼쪽 그림상 파란색 직선의 기울기는 오른쪽 그림상 파란색 직선의 y좌표로 나타나요.
왼쪽 그림과 오른쪽 그림에서 a, b, c, p, q의 x좌표는 동일해요.
이차함수는 대칭축을 기준으로 대칭이기에 a와 q, b와 c는 각각 p를 기준으로 대칭인 수예요.
삼차함수에서 활용할 수 있는 새로운 비율관계가 나왔죠?
(p-b):(c-p)=1:1이고 (p-a):(q-p)=1:1이에요.
이제 사차함수로 넘어가 볼까요?
사차함수 f(x) 위의 x좌표가 a인 점과 (단, a는 상수) x좌표가 t인 점을 이은 직선의 방정식은 y=[{f(t)-f(a)}÷(t-a)](x-a)+f(a)이고 이 직선의 기울기 m(t)={f(t)-f(a)}÷(t-a)이에요.
t에 대한 식 {f(t)-f(a)}는 (t-a)를 인수로 갖는 사차식이기에 m(t)는 삼차식으로 나타낼 수 있어요.
f(x)=M(x-a)(x-b)(x-c)(x-d)+f(a)라면 m(t)=M(x-b)(x-c)(x-d)인 거예요. (단, t=a일 때는 m(t)=f'(a))
m(t)가 삼차식 형태로 나타난다는 점을 이용하면 삼차함수의 성질을 사차함수인 f(x)에 적용할 수 있어요.
왼쪽 그림상 (a, 0)을 지나고 x=r에서 사차함수에 접하는 빨간색 직선과 (a, 0)을 지나고 x=q에서 사차함수에 접하는 파란색 직선을 그리면 삼차함수의 비율관계에 의해 (q-p):(r-q):(s-r)=1:2:1임을 알 수 있어요.
특수한 케이스들에서 이러한 비율관계를 활용하는 예시를 몇 가지 들어 볼게요.
a가 사차함수와 공통 접선의 접점인 경우 (b-a):(c-b):(d-c)=1:2:1이에요.
a가 사차함수 f(x)-f(a)의 삼중근인 경우 (a-p):(q-a):(b-q)=1:2:1이에요.
왼쪽 그림상 빨간색 직선과 파란색 직선의 기울기가 부호만 반대인 경우 (c-b):(d-c)=1:1이에요.
이와 같이 다항항수 위의 한 점에서 다항함수에 그은 접선이 있는 경우 비율관계를 이용해 필요한 점의 x좌표를 손쉽게 구할 수 있어요. 이미 알고 있는 비율관계나 근과 계수의 관계 등과 연관지어 사용하면 복잡한 식을 전개해야 하는 풀이를 최소화할 수 있을 거예요.
0 XDK (+51,010)
-
50,000
-
10
-
1,000
-
10번중에서 4번 수업했는데 환불 가능해?? 그리고 지금 보니까 성사등록 안했는데 해야하나??
-
화작83 언매80 정도던데
-
오랜만에 오르비 5
모두 반가와요 다들 제가 누군지 아시나용
-
타강사 기본개념이랑 3점수준 기출까진 했는데요. 다음 커리큘럼으로 알파테크닉은...
-
zzzzzz 10
-
. 2
-
괜찮은것같아?? 국어영어 공부하는데 5따리임..
-
진짠가 하고 방금 열재니까 38.6도인데 어무니???
-
쓸만한듯
-
.
-
보통 작수 난이도 따라가던데 쉬웠으니깐… 수능은 짝수해 불국어가 정배긴함
-
자른지 일주일도 안됐는데 길어서 정리가 안돼서
-
화1을 아무것도 몰라서 시작을 못했음
-
나의 성장이 두렵습니까
-
6모 탐구준비 0
국수영 442인데 사탐 준비해야하나요 아님 국수영 더 빡세게 할까요 세지한지인데...
-
얘네 내가 연고대 보내고 만다 라고 할 뻔 여러분이 시험을 잘봐서 원하는 대학에...
-
6모 잘 보면 꼭 그 해는 수능 개말아먹어서 세계선을 좀 틀어야겟다
-
대학간 사람들은 모두 기만러로 간주.
-
잘 가 내 사랑
-
오르비 안녕히주무세요 27
해 뜨고 봐요
-
이거부터 해야겠다
-
한달도 안남았단건 아는데
-
곧 둘이 만나겠다… 언제 이렇게 지났어
-
수학 교재에서 고난도 문제 모아놓은 페이지들은 유독 군데군데 동그란 모양으로 젖었다...
-
과거(2010년대 초~중반) 인싸의 자질 얼마나 목적성이 뚜렷하면서 신나고 화끈하게...
-
D-46ㅇㅈ 3
다시 열심히 살아볼게요
-
꼬순내나는 강쥐가 12
진짜 귀여운거같야요.
-
평화롭고 화목한, 즐겁고 행복한 커뮤가 되었으면 하는 게 제 소망인데...지금은 그...
-
이석증이라 했는데 지금 몸 으슬으슬하고 열나는데 독감인가 4일째 아프니까 너무...
-
라면먹어야지 7
-
기출 뉴런 4규 빅포텐 했고 이해원 풀까 생각중인데 핲모형 말고 유형서 더 풀어야될거같음 ㅊㅊ좀
-
근데n제는 1
2025버전이든 2026버전이든 상관없지 않나요?
-
이러니까 잠이 더 잘오노
-
오늘 너무 힘들다 생2 토론 재미있었는데 미리 떠나서 미안해용
-
집에 옛날통닭은 있는데 나가서 사올까
-
아 패턴 조졋네 0
잉
-
수강평 알바? 0
저격아니고 궁금한 것. 수강률이 5% 아래인데 강의 다 들었다면서 별로라고 수강평쓰는 거 알바임?
-
현역 수학 1
상담좀 해주실분 있나요?? 간절합니다
-
5월 더프 볼까 1
고민되네 서프 온거 일단 풀고 고민해야지
-
이거땜에 막혀서 지금이 기분이 ㅈ같은데 원인을 모르겠다
-
고3때 이후로 공부를 딱히 안해서 감 떨어지긴 한 듯 대충 29분 정도 걸림(내분ㄱㅅㄲ)
-
해모 나왔네 0
구매 완료 ㅎㅎ
-
뭔가 시같은거 쓸 때 다의적으로 표현하려는 경향이 강한듯 0
그렇다고 티나게 하면 저렴해보이고 슬쩍하면 아무도 모르는 느낌
-
생2하면 재밋는 토론 가능함
-
선착순 한 명 6
천덕
-
이미 한달치 결제했고 4번 수업 했고 6번 남았어 나랑 좀 안맞는것같아서..
-
생2에 나오는 히드라 24
처음 들었을 때 이런애 상상했는데 이건 뭐 생기다 만거처럼 생김
-
막, 막, 걸음마를 땐 아이는 벌써 날 준비를 하고있는가 어둡고 한치 앞도 보이지...
-
안녕 자러 가요 5모 내일 풀어야게...
-
밤새는거 어떰? 2
버틸만한가
ㅇㅎ 이분이셨구나
무민님인 줄

그렇게 대단하신 분과 저를 착각하시다니..
선생님도 대단하셔요수학 잘하고 싶어요 수학은 나의 원수

파이팅!!!!!!!생명수님이셧군..
와 이거 생명수 님이었구나
예상 못 했어요
이렇게 시각 자료도 써주시니 훨씬 보기 좋네요!

ㅎㅎ 좋은 말씀 감사합니다!점수 상당히 높게 드렸는데
누군지는 몰랐네요

감사합니다!!!오마이갓 좋은데여 이거

감사합니다~!
감사합니다^&^그럼 4차함수의 비율관계를 5차에서도 쓸 수 있나요?

넴 쓸 수 있어요!감사합니다 붙잡고 이해해봐야겠어요...ㄷㄷ

감사합니다~~생명suuuuuuuuuuuuuuuuuu
그저 goat

Siuuuu~
감사합니다:)