[칼럼] n차함수를 넘나드는 비율관계
게시글 주소: https://orbi.kr/00072909034
다항함수의 비율관계에 대해서는 다들 익숙하실 거예요.
그런데 n차함수의 비율관계를 n+1차함수에서도 사용할 수 있다는 사실, 알고 계셨나요?
삼차함수 f(x) 위의 x좌표가 a인 점과 (단, a는 상수) x좌표가 t인 점을 이은 직선의 방정식은 y=[{f(t)-f(a)}÷(t-a)](x-a)+f(a)이고 이 직선의 기울기 m(t)={f(t)-f(a)}÷(t-a)이에요.
t에 대한 식 {f(t)-f(a)}는 (t-a)를 인수로 갖는 삼차식이기에 m(t)는 이차식으로 나타낼 수 있어요.
f(x)=M(x-a)(x-b)(x-c)+f(a)라면 m(t)=M(t-b)(t-c)인 거예요. (단, t=a일 때는 m(t)=f'(a))
이 공식 m(t)=M(t-b)(t-c) 자체만으로도 정말 유용하게 쓰일 수 있기에 암기해 두어도 좋아요.
거리곱을 활용한다면 두 점을 이은 직선의 기울기를 구할 때 식을 쓸 필요도 없겠죠.
m(t)가 이차식 형태로 나타난다는 점을 이용하면 이차함수의 성질을 삼차함수인 f(x)에 적용할 수 있어요.
왼쪽 그림상 (a, 0)을 지나고 x=p에서 삼차함수에 접하는 직선은 빨간색으로, x=a에서 삼차함수에 접하는 직선은 파란색으로 나타내 볼게요.
왼쪽 그림상 빨간색 직선의 기울기는 오른쪽 그림상 빨간색 직선의 y좌표로, 왼쪽 그림상 파란색 직선의 기울기는 오른쪽 그림상 파란색 직선의 y좌표로 나타나요.
왼쪽 그림과 오른쪽 그림에서 a, b, c, p, q의 x좌표는 동일해요.
이차함수는 대칭축을 기준으로 대칭이기에 a와 q, b와 c는 각각 p를 기준으로 대칭인 수예요.
삼차함수에서 활용할 수 있는 새로운 비율관계가 나왔죠?
(p-b):(c-p)=1:1이고 (p-a):(q-p)=1:1이에요.
이제 사차함수로 넘어가 볼까요?
사차함수 f(x) 위의 x좌표가 a인 점과 (단, a는 상수) x좌표가 t인 점을 이은 직선의 방정식은 y=[{f(t)-f(a)}÷(t-a)](x-a)+f(a)이고 이 직선의 기울기 m(t)={f(t)-f(a)}÷(t-a)이에요.
t에 대한 식 {f(t)-f(a)}는 (t-a)를 인수로 갖는 사차식이기에 m(t)는 삼차식으로 나타낼 수 있어요.
f(x)=M(x-a)(x-b)(x-c)(x-d)+f(a)라면 m(t)=M(x-b)(x-c)(x-d)인 거예요. (단, t=a일 때는 m(t)=f'(a))
m(t)가 삼차식 형태로 나타난다는 점을 이용하면 삼차함수의 성질을 사차함수인 f(x)에 적용할 수 있어요.
왼쪽 그림상 (a, 0)을 지나고 x=r에서 사차함수에 접하는 빨간색 직선과 (a, 0)을 지나고 x=q에서 사차함수에 접하는 파란색 직선을 그리면 삼차함수의 비율관계에 의해 (q-p):(r-q):(s-r)=1:2:1임을 알 수 있어요.
특수한 케이스들에서 이러한 비율관계를 활용하는 예시를 몇 가지 들어 볼게요.
a가 사차함수와 공통 접선의 접점인 경우 (b-a):(c-b):(d-c)=1:2:1이에요.
a가 사차함수 f(x)-f(a)의 삼중근인 경우 (a-p):(q-a):(b-q)=1:2:1이에요.
왼쪽 그림상 빨간색 직선과 파란색 직선의 기울기가 부호만 반대인 경우 (c-b):(d-c)=1:1이에요.
이와 같이 다항항수 위의 한 점에서 다항함수에 그은 접선이 있는 경우 비율관계를 이용해 필요한 점의 x좌표를 손쉽게 구할 수 있어요. 이미 알고 있는 비율관계나 근과 계수의 관계 등과 연관지어 사용하면 복잡한 식을 전개해야 하는 풀이를 최소화할 수 있을 거예요.
0 XDK (+51,010)
-
50,000
-
10
-
1,000
-
?!
-
문재인 "트럼프는 때가 되면 다시 북한과의 대화에 나설 것…평양 방문 전격적으로 이뤄질 가능성 높아" 1
문재인 전 대통령은 17일 " 비록 프란치스코 교황은 선종하셨지만, 새 교황의...
-
개쩌는 3
체크셔츠가 갖고싶어졌다
-
책 나왔나요?
-
얼굴 인플루언서급 키 168 뼈대 얇고 비율 좋음 바꿔살 수 있으면 돈 얼마까지 빚지기 가능?
-
제곧내 본인 87점
-
화작 검더텅 풀려고 하는데 개정 후인 22학년도부터 풀면 될까요 어디서는...
-
사탐런 질문 0
한과목 사탐런 생각하고 있는데 사문 생윤중에 어떤 과목이 더 괜찮을까요?
-
제 지인 (친구X) 은 항상 과외20분전에 무인프린트샵 가서 국어 기출시험지 하나...
-
미적분이었나 수2였나 기출이었는데 h(t)가 무슨 교점의 개수고 g(t)도 무슨...
-
수능실모에 도움되었던 실모들 추천좀 해주세요. 히든 강대x라든가
-
강사 이력 연세대 경영학과 최초합 연세대 심리학과 최초합 고려대 경제학과 최초합...
-
개체수 10000 멘델집단이니깐 총 유전자수 20000 일텐데 D:d=1:2로 합이...
-
모두 다 비닐 안뜯은 새책입니다 수1 코어앤 모어25000 수2 코어앤...
-
핵형 문제 풀 때 종 판단할 때 요즘 일부 염색체를 표시하지 않거나 미지수로 주고...
-
반수 시즌이 아니라 그런가
-
탈릅할까 말까 9
.
-
어느 정도로 공부해야 되나요? 많이 어려운가요??
-
요근래 학생들 중간고사가 끝나 과외를 많이 알아봅니다!! 과외알바를 생각하시는...
-
전에 올렸던 문제의 정답은 9입니다! [난이도 : 쉬운 4점 ~ 평이한 4점]...
-
5등급제 0
혹시 설명해주실 분... 화석이라 지금 고1 애들이 뭘 배우고 있는지 읽어봐도 잘...
-
기생집4점 점프 빼고 다 풀엇는데 다음 커리로 넘어갈지 점프 끝내고 시작할지...
-
흠흠 7
오늘 석촌호수 다녀올가 메타몽도 오늘까지내
-
풀고 어떤지 휭까점...
-
세특 관련해서 질문드려 봅니다.. "하나의 송신기에서 동일 주파수로 전송할 때,...
-
[속보]이재명 "4년 연임제 도입으로 대통령 권한 분산…국무총리는 국회서 추천" 10
제21대 대선 공식 선거운동 일주일째인 18일 더불어민주당 이재명 후보는 대통령...
-
헬스갔다 피아노 가야지 14
기분좋게 휴일을 시작하자
-
고3 (수시최저러)이라 내신시험기간이랑 세특도 있고 3모전후로 탐구과목바꾸고...
-
[속보]이재명 "감사원 국회로 이관…공수처장·검찰총장·경찰청장 국회 동의 받아야" 1
후속기사가 이어집니다
-
후속기사가 이어집니다
-
이거보고 함수로 푼 사람들은 어떻게 함수로 풀 생각을 떠올리셨나요?
-
수능까지 같이 가고싶다고 해줘서 넘 기뻐용 여기에 대단한 쌤들 많지만 ㅎㅅㅎ 한가지...
-
도야 2
훗
-
다 휴릅하면 12
여긴 내가 지배한다
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
여름방학 때 시킬건데 국어는 고등학교 공부가 처음인데 바로 강의 듣게해? 아님 고1...
-
제가 미래에 살곳이랍니다.
-
건동홍라인 공대 1학년 마치고 육군 입대했습니다. 마지막 수능은 재수때인...
-
적자들은 참고!!
-
프사 설정하고 싶은데 자꾸 파일이 크다길래 100kb까지 압축했는데도 안되네요...
-
시대인재 수과학 브릿지모의고사와 브릿지전국모의고사중에 시간없을때 둘중 하나만...
-
ㅇㅂㄱ 1
-
5.18 민주화운동 45주년 기념
-
지하철 놓침 3
ㅅㅂ
-
“좋은 기업 사서 평생 보유”… 가치투자 원칙 남기고 떠나는 전설[글로벌 포커스] 0
세계 최고의 투자자 중 한 명인 워런 버핏 미국 버크셔해서웨이 회장 겸...
-
드릴수1하사십 0
드릴 수1 정답률 90퍼정도되는데 하사십으로 넘어가도 되려나요 아님 이로운 풀고 하사십해볼까요 ㅠ
-
지하철 놓칠 뻔 2
휴
ㅇㅎ 이분이셨구나
무민님인 줄

그렇게 대단하신 분과 저를 착각하시다니..
선생님도 대단하셔요수학 잘하고 싶어요 수학은 나의 원수

파이팅!!!!!!!생명수님이셧군..
와 이거 생명수 님이었구나
예상 못 했어요
이렇게 시각 자료도 써주시니 훨씬 보기 좋네요!

ㅎㅎ 좋은 말씀 감사합니다!점수 상당히 높게 드렸는데
누군지는 몰랐네요

감사합니다!!!오마이갓 좋은데여 이거

감사합니다~!
감사합니다^&^그럼 4차함수의 비율관계를 5차에서도 쓸 수 있나요?

넴 쓸 수 있어요!감사합니다 붙잡고 이해해봐야겠어요...ㄷㄷ

감사합니다~~생명suuuuuuuuuuuuuuuuuu
그저 goat

Siuuuu~
감사합니다:)