[칼럼] 미적분을 곁들여 231122 연역적으로 풀어보기
게시글 주소: https://orbi.kr/00072902790
*본 칼럼은 물개물개님의 칼럼대회에 제출되었습니다.
본 글에는 합성함수 미분에 대한 내용이 일부 포함되어 있으니 심장이 약한 통통이분들은 주의하시길 바랍니다.
현장에서 이런 킬러 문제를 풀다보면 '에라이 시발 얻어 걸려라!'라는 내면의 외침과 함께 무작정 개형부터 그려보면서 수학 시험이 미술 시험이 되어버리는 일들이 종종 있습니다.
하지만 이런 풀이는 필연성과 논리적 완결성이 상당히 떨어져서 운이 나쁘면 정답인 케이스에 도달하기까지 시간이 상당히 오래 걸리고, 답이 아닌 경우들을 걸러낼 때 감에 의존하는 경향이 있습니다.
그렇다면 이 문제를 풀 때 꼭 g(x)에 대한 이차식을 전개해서 근의 공식으로 g(x)를 직접 구해야만 제대로 된 풀이냐?
그것도 좋은 방법이지만, 오늘 제가 소개해드릴 풀이는 조금은 다른 방식입니다.
본 글에서는 수식과 그래프를 적당히 섞어서 g(x)의 연속성도 검증할 수 있고, 5/2가 f(x)와 (1,f(1))을 지나는 직선의 접점의 x좌표가 될 수 밖에 없음을 연역할 수 있는 풀이를 소개해드리려 합니다.
.
.
.
Step 1.
가조건을 그대로 둔다면 크게 얻을 정보가 없기에 등식을 다음과 같이 바꿉니다.
등식을 변형하면서 x=1에 대한 정보가 누락되었고, g(x)가 미지의 함수이기 때문에 대략적인 정보를 파악합니다.
위 사실로부터 다음의 결과를 도출해낼 수 있습니다.
Step 2.
여기서 5/2의 위치를 어느 정도 특정해볼 수 있습니다.
따라서 다음의 결론을 도출할 수 있습니다.
지금까지 얻은 정보를 그래프에 나타내면
Step 3.
지금부터 매우 중요하니 집중합시다.
5/2가 대칭축 우측에 있다는 점을 통해 g(x)가 f'(x)의 증가 구간에서만 합성된다는 사실을 알 수 있습니다.
그리고 이 말은 가조건의 등식을 g(x)에 대해 표현할 수 있다는 이야기로 이어집니다.
사실 좀 더 간단하게 표현하는 방법도 있습니다.
새로운 함수 p(x)를 다음과 같이 정의한다면?
Step 4.
미지의 함수였던 g(x)의 정체를 어느 정도 파악할 수 있게 되었으니 관찰합니다.
지금까지의 과정을 통해서 g(x)가 실수 전체의 집합에서 미분가능한 함수라는 숨겨진 조건을 도출할 수 있습니다.
수2에 나온 문제라서 이점이 크게 문제가 되진 않았지만, 미적분에서 이런 특징을 활용해야만 풀리는 문제를 낸다면 정답률이 상당히 떨어질 것이라고 예상이 됩니다.
섬세하게 공부해서 미래를 대비할 수 있도록 합시다.
Step 5.
g(x)가 미분가능한 함수임을 알았으니 최솟값을 파악하기 위해 미분합니다.
Step 6.
g(x)에 대한 정보를 얼추 모두 잡아냈기 때문에, f(x)를 결정합니다.
.
.
.
부연 설명을 위해 호흡이 길어진 감이 있지만, 순차적으로 정보를 해석해보면 생각보다 굉장히 간결합니다.
본 글의 풀이만 맞고 다른 풀이는 무조건 틀렸다!라고 할 순 없지만 꽤나 장점이 많은 풀이라 공부해보는 것이 좋다고 생각합니다. ㅎㅎ
도움이 되었다면 좋아요 눌러주세요~!
0 XDK (+10)
-
10
-
더프 등급컷 2
어디서봐요? 나온게 확실해요????????? 화작 미적 물르 알려주세요
-
ㅎㅎ...
-
진짜로...?
-
저기 뭐 물어볼거 있는데 표정:뭐 이 병신새끼야 나랑 멘티할래 표정:니가 뭔데?...
-
듣기만 안틀렸어도 3,4덮 둘다 80중반인데 자꾸 두세개씩 나가네
-
저 솔직히 1
친구들과 노래방가서도 전 오르비 했쪄욥...
-
솔직히 1절만 부르고 스킵하고 싶음 2절부터 흥 뚝뚝 떨어짐
-
ㅈㄱㄴ
-
3,4점 차이 나나?
-
아예 쌩노베입니다...!
-
재독이들 저녁시간이구나
-
소설에서 2
대충 읽다보면 대화의 주체가 누군지 했갈리는데 "정시파이터는 성공한다." 나는...
-
아 ㅈ됬다 2
7시에 중간인데
-
인터넷에서 너무 자기를 드러내는건 좋지 않다고 생각함 2
풀배터리 검사 올리고 느낀점이랄까요
-
수열보다 함수추론으로 나오는게 나은거같음 (이유는 그냥 내가 그게 더 잘맞기...
-
원래 독문언 순으로 풀었었고, 보통 35 / 30 나와서 10분 동안 언매 다...
-
과제도 아폴로랑 이것저것 자체교재들 많고 조교들이 과제 풀이영상 올려주고...
-
15년 구형 ㄷㄷㄷ
-
https://www.bbc.com/news/articles/c5ygdv47vlzo...
오 님이었구나
헤헤 저였습니다

역시 리제는 ㄸㄱ똑해피평 좀 높아졌나요? ㅋ ㅋ

네.그런데 다른분들이 너무 깎아먹긴 했지만 해평보다는 그래도 훨씬 높죠
저도 뿡평 높이려고 모고나 제작하려 하는데 잘 안되네요
제 자작 재탕이나 해야겠다
화이띵
캬 스텔라이브의 자랑
이거 묻힐만한 퀄 아닌거 같은데 아쉽네잉
좋게 봐주셔서 감사합니다 ㅎㅎ
근데 현월님이 띄워주셧네

이륙축하드립니다
감사합니다 현월님확실히 미적 선택자가 유리한 부분이있는 문제긴했어요(풀이의 다양성이 열려있다는 점에서 더더욱)

아무래도 함수를 깊게 다루다보니..우와 멋지네요
역시 스텔라이브의 자랑 정리제!