[칼럼] 미적분을 곁들여 231122 연역적으로 풀어보기
게시글 주소: https://orbi.kr/00072902790
*본 칼럼은 물개물개님의 칼럼대회에 제출되었습니다.
본 글에는 합성함수 미분에 대한 내용이 일부 포함되어 있으니 심장이 약한 통통이분들은 주의하시길 바랍니다.
현장에서 이런 킬러 문제를 풀다보면 '에라이 시발 얻어 걸려라!'라는 내면의 외침과 함께 무작정 개형부터 그려보면서 수학 시험이 미술 시험이 되어버리는 일들이 종종 있습니다.
하지만 이런 풀이는 필연성과 논리적 완결성이 상당히 떨어져서 운이 나쁘면 정답인 케이스에 도달하기까지 시간이 상당히 오래 걸리고, 답이 아닌 경우들을 걸러낼 때 감에 의존하는 경향이 있습니다.
그렇다면 이 문제를 풀 때 꼭 g(x)에 대한 이차식을 전개해서 근의 공식으로 g(x)를 직접 구해야만 제대로 된 풀이냐?
그것도 좋은 방법이지만, 오늘 제가 소개해드릴 풀이는 조금은 다른 방식입니다.
본 글에서는 수식과 그래프를 적당히 섞어서 g(x)의 연속성도 검증할 수 있고, 5/2가 f(x)와 (1,f(1))을 지나는 직선의 접점의 x좌표가 될 수 밖에 없음을 연역할 수 있는 풀이를 소개해드리려 합니다.
.
.
.
Step 1.
가조건을 그대로 둔다면 크게 얻을 정보가 없기에 등식을 다음과 같이 바꿉니다.
등식을 변형하면서 x=1에 대한 정보가 누락되었고, g(x)가 미지의 함수이기 때문에 대략적인 정보를 파악합니다.
위 사실로부터 다음의 결과를 도출해낼 수 있습니다.
Step 2.
여기서 5/2의 위치를 어느 정도 특정해볼 수 있습니다.
따라서 다음의 결론을 도출할 수 있습니다.
지금까지 얻은 정보를 그래프에 나타내면
Step 3.
지금부터 매우 중요하니 집중합시다.
5/2가 대칭축 우측에 있다는 점을 통해 g(x)가 f'(x)의 증가 구간에서만 합성된다는 사실을 알 수 있습니다.
그리고 이 말은 가조건의 등식을 g(x)에 대해 표현할 수 있다는 이야기로 이어집니다.
사실 좀 더 간단하게 표현하는 방법도 있습니다.
새로운 함수 p(x)를 다음과 같이 정의한다면?
Step 4.
미지의 함수였던 g(x)의 정체를 어느 정도 파악할 수 있게 되었으니 관찰합니다.
지금까지의 과정을 통해서 g(x)가 실수 전체의 집합에서 미분가능한 함수라는 숨겨진 조건을 도출할 수 있습니다.
수2에 나온 문제라서 이점이 크게 문제가 되진 않았지만, 미적분에서 이런 특징을 활용해야만 풀리는 문제를 낸다면 정답률이 상당히 떨어질 것이라고 예상이 됩니다.
섬세하게 공부해서 미래를 대비할 수 있도록 합시다.
Step 5.
g(x)가 미분가능한 함수임을 알았으니 최솟값을 파악하기 위해 미분합니다.
Step 6.
g(x)에 대한 정보를 얼추 모두 잡아냈기 때문에, f(x)를 결정합니다.
.
.
.
부연 설명을 위해 호흡이 길어진 감이 있지만, 순차적으로 정보를 해석해보면 생각보다 굉장히 간결합니다.
본 글의 풀이만 맞고 다른 풀이는 무조건 틀렸다!라고 할 순 없지만 꽤나 장점이 많은 풀이라 공부해보는 것이 좋다고 생각합니다. ㅎㅎ
도움이 되었다면 좋아요 눌러주세요~!
0 XDK (+50,010)
-
50,000
-
10
-
10번중에서 4번 수업했는데 환불 가능해?? 그리고 지금 보니까 성사등록 안했는데 해야하나??
-
화작83 언매80 정도던데
-
오랜만에 오르비 5
모두 반가와요 다들 제가 누군지 아시나용
-
타강사 기본개념이랑 3점수준 기출까진 했는데요. 다음 커리큘럼으로 알파테크닉은...
-
zzzzzz 10
-
. 2
-
괜찮은것같아?? 국어영어 공부하는데 5따리임..
-
진짠가 하고 방금 열재니까 38.6도인데 어무니???
-
쓸만한듯
-
.
-
보통 작수 난이도 따라가던데 쉬웠으니깐… 수능은 짝수해 불국어가 정배긴함
-
자른지 일주일도 안됐는데 길어서 정리가 안돼서
-
화1을 아무것도 몰라서 시작을 못했음
-
나의 성장이 두렵습니까
-
6모 탐구준비 0
국수영 442인데 사탐 준비해야하나요 아님 국수영 더 빡세게 할까요 세지한지인데...
-
얘네 내가 연고대 보내고 만다 라고 할 뻔 여러분이 시험을 잘봐서 원하는 대학에...
-
6모 잘 보면 꼭 그 해는 수능 개말아먹어서 세계선을 좀 틀어야겟다
-
대학간 사람들은 모두 기만러로 간주.
-
잘 가 내 사랑
-
오르비 안녕히주무세요 27
해 뜨고 봐요
-
이거부터 해야겠다
-
한달도 안남았단건 아는데
-
곧 둘이 만나겠다… 언제 이렇게 지났어
-
수학 교재에서 고난도 문제 모아놓은 페이지들은 유독 군데군데 동그란 모양으로 젖었다...
-
과거(2010년대 초~중반) 인싸의 자질 얼마나 목적성이 뚜렷하면서 신나고 화끈하게...
-
D-46ㅇㅈ 3
다시 열심히 살아볼게요
-
꼬순내나는 강쥐가 12
진짜 귀여운거같야요.
-
평화롭고 화목한, 즐겁고 행복한 커뮤가 되었으면 하는 게 제 소망인데...지금은 그...
-
이석증이라 했는데 지금 몸 으슬으슬하고 열나는데 독감인가 4일째 아프니까 너무...
-
라면먹어야지 7
-
기출 뉴런 4규 빅포텐 했고 이해원 풀까 생각중인데 핲모형 말고 유형서 더 풀어야될거같음 ㅊㅊ좀
-
근데n제는 1
2025버전이든 2026버전이든 상관없지 않나요?
-
이러니까 잠이 더 잘오노
-
오늘 너무 힘들다 생2 토론 재미있었는데 미리 떠나서 미안해용
-
집에 옛날통닭은 있는데 나가서 사올까
-
아 패턴 조졋네 0
잉
-
수강평 알바? 0
저격아니고 궁금한 것. 수강률이 5% 아래인데 강의 다 들었다면서 별로라고 수강평쓰는 거 알바임?
-
현역 수학 1
상담좀 해주실분 있나요?? 간절합니다
-
5월 더프 볼까 1
고민되네 서프 온거 일단 풀고 고민해야지
-
이거땜에 막혀서 지금이 기분이 ㅈ같은데 원인을 모르겠다
-
고3때 이후로 공부를 딱히 안해서 감 떨어지긴 한 듯 대충 29분 정도 걸림(내분ㄱㅅㄲ)
-
해모 나왔네 0
구매 완료 ㅎㅎ
-
뭔가 시같은거 쓸 때 다의적으로 표현하려는 경향이 강한듯 0
그렇다고 티나게 하면 저렴해보이고 슬쩍하면 아무도 모르는 느낌
-
생2하면 재밋는 토론 가능함
-
선착순 한 명 6
천덕
-
이미 한달치 결제했고 4번 수업 했고 6번 남았어 나랑 좀 안맞는것같아서..
-
생2에 나오는 히드라 24
처음 들었을 때 이런애 상상했는데 이건 뭐 생기다 만거처럼 생김
-
막, 막, 걸음마를 땐 아이는 벌써 날 준비를 하고있는가 어둡고 한치 앞도 보이지...
-
안녕 자러 가요 5모 내일 풀어야게...
-
밤새는거 어떰? 2
버틸만한가
오 님이었구나
헤헤 저였습니다

역시 리제는 ㄸㄱ똑해피평 좀 높아졌나요? ㅋ ㅋ

네.그런데 다른분들이 너무 깎아먹긴 했지만 해평보다는 그래도 훨씬 높죠
저도 뿡평 높이려고 모고나 제작하려 하는데 잘 안되네요
제 자작 재탕이나 해야겠다
화이띵
캬 스텔라이브의 자랑
이거 묻힐만한 퀄 아닌거 같은데 아쉽네잉
좋게 봐주셔서 감사합니다 ㅎㅎ
근데 현월님이 띄워주셧네

이륙축하드립니다
감사합니다 현월님확실히 미적 선택자가 유리한 부분이있는 문제긴했어요(풀이의 다양성이 열려있다는 점에서 더더욱)

아무래도 함수를 깊게 다루다보니..우와 멋지네요
역시 스텔라이브의 자랑 정리제!