-
김진아 하지원 최홍라 정설아
-
우웅
-
민머리가 된 느낌이야
-
90점 (빈칸3틀)
-
아님
-
안녕하세요 지방자사고에서 수시(학종)으로 인서울공대를 합격해서 다니다가 올해 1년...
-
3450대 애국심도 있겠지만 진짜 스포츠선수 하나가 대한민국 전 국민을 자극하는구나
-
작수기준 화확생사 44333 뭐 이정도 받으면 지방 교대 뚤리는거 같은데 저...
-
. . . 2
. . .
-
심-멘이 교재 배송해 줌 이벤트 곧 종료!!! 4월 한 달 무료였는데...
-
1번이 왜 답인지 모르겠어요. 저는 5번이 여자가라고 했다는 이유만으로 여성 전체의...
-
국어핑쨔앙~ 10
하잇!! 나니가스키이~♡ 쵸코민트 요리모 아 나 타♡
-
나만 어려어? 3점짜리도 막힘 ㅠㅠㅠㅠㅠㅠ첨하는거긴한데 그래도 ㅠㅠ
-
맨유vs토트넘 5
누가 우승할 것 같음?
-
수학 미적 100맞으려면 강기원이 딥인가요? N제 여러권 사서 열심히 풀어도 강기원...
-
이거 보고 있니?
-
난 아무것도 안했는데.. 우리집 생일도 아무도 안챙겨서 아무 기념일도 없는데 뭔가 다들 하는거같네
-
내스타일은 아니라 사귀진 않겠지만 갸이쁜건 부정할수없네
-
에린 에린 에린 에린
-
너무 쉬워서 독해력이 쓸모없음 문학은 선지가 픽미픽미 하는 수준이고 독서도 경제랑...
-
내가 앞자리 9인거 봐서는 물 맞다 (사실 15번 찍맞했음: 보기두개랑 지문형...
-
"케인야이!" 2
"케인야이, 어서 트위치로 돌아가자이. 느그 타지리랑 성근이가 얼매나 기다리겄냐아....
-
ㅂ 원래 있는 단어란건 알지만 타이밍이 ㅋㅋㅋ
-
뀨뀨 21
뀨우
-
먹잘알님들골라주세요
-
어떻게 풀지 감도 안잡히네 이정돈 쉽게 풀어야 설대 가는데 <<< 이생각 많이 하게...
-
안녕하세요 6
포만한 있다가 처음 가입합니다 ㅎㅎ 잣밥 허수리 많이 배워야 합니다
-
큐앤에이 게시판엔 열심히 촬영중이라고하는데 수상할정도로 업로드 되고 있지 않는 …...
-
리트 질문 0
언어이해가 수능이랑 그나마 비슷한거?
-
총평) 교육청답게 특이한 문제는 없었다. 그나마 15번? 1) 교육청답게, 다 안...
-
식사 맛있게 하십쇼 23
다들 맛점하쇼
-
마지막기혜일탠데 웃응하고 은태 깔끔하개 하면 좇을거갗음
-
1등급이 4퍼니까 4/100=1/25 25번 치면 1등급 한번은 받을 수 있음..
-
그니까 대충1퍼센트 확률로 찍맞 가능하다는거고 그말은 대충1퍼센트확률로 만점도...
-
1달정도 공부해봄. 1. 쌍사표본이 국영수를 못하는건 맞음. 근데 쌍사는 개잘함ㅋㅋ...
-
이 영화 개봉할 때는 좋아하는 사람이랑 함께 할 수 있으면 좋겠다
-
50분정도 잡고 푸는건가
-
현역인데 뭔가 1
14번까지 1트만에 안풀리는거있으면 재수 확정같아서 멘탈나감 그때부터 잡생각들고...
-
ㅈㄱㄴ
-
수능 스터디 모집합니다. 카카오톡 단톡으로 진행될 예정입니다. 매일 기상 인증,...
-
아 5모 망해서 너무 기분이 안좋다
-
기하부심 땜에 기하문제 부터 풀었는데 공통풀 때 머리가 안 돌아가네 30에서 뇌 다...
-
ㅈㄱㄴ
-
근데 그러면 안 늘어서 하긴 해야 하는데 아아아 가형 기출 그만 줘라 김범준 친구가...
-
오르비 오지마라 2
넵
-
언어와 매체 97 (비문학 -1) 미적분 88 (공통 -1 미적분 -2) 영어 95...
-
ㅇㅇ..
-
1페 2분 2페 5분 3페 7분 4페 10분 어디서 줄여야함? 고트는 15분컷햇을뜻...
-
체력이 딸려서 더 못나아감... 중반부까진 풀이 비슷했는데 아 근데 애초에 세...
12
64
차피풀이없으면안드림뇨
개쉽네ㅋㅋㅋ 3번
15
1/루트3이라 맞음
외쳐라무적엘지
풀이없음안드림뇨..
20
개빡세보이는데...
30
풀이동반
AB를 지름으로 하는 원 C를 기준으로 좌표를 잡음. A는 (-1,0,0), B는 (1,0,0)으로 두고, 두 구의 중심 O₁, O₂는 각각 (0,0,r), (0,0,-r)로 설정함. 원 C는 z=0 평면 위에 있고, APQ는 정삼각형이므로 평면 APQ를 정의할 수 있음. O₁AP, O₂AQ가 O₁O₂A에 수직이므로 P와 Q는 z축 기준 대칭 위치에 잡힘. 평면 APQ의 법선벡터 구하고, z=0 평면의 법선벡터와 이루는 각을 내적 공식으로 구함.
오 되게 그럴듯한데
안타깝지만 핵심키워드가 없어서 ㄴㅇㅈ
ㄱㄷ
외부축설정 어케됐는지 모르겠음,
정사영합 어떻게 썼는지 확인하면 ㅇㅈ
왜 45일까
외부축은 AB를 지름으로 하는 원을 기준으로 잡는다. A와 B를 각각 x축 위의 -1과 1로 두면, 중점이 원점이 되고, 자연스럽게 z축 방향으로 두 구의 중심인 O₁과 O₂를 대칭으로 둘 수 있다. 그래서 O₁은 z축 위 r만큼 위에, O₂는 r만큼 아래에 놓인다. 이 구조로 좌표계를 설정하면 도형 전체가 대칭이 되고 계산이 편해진다.
이제 정사영 넓이 조건을 보면, 삼각형 O₁AP와 O₂AQ의 실제 넓이를 기준으로 각각을 기준 평면인 O₁O₂A 평면 위로 정사영했을 때, 그 넓이의 합이 1이 되도록 주어졌다. 정사영 넓이는 각각의 실제 넓이에 평면 사이 각도의 코사인값을 곱한 것으로 계산된다. 따라서 두 삼각형의 정사영 넓이를 각각 실제 넓이 × 코사인값으로 표현하고, 그 둘을 더해서 1이라는 조건을 만들 수 있다. 이 조건을 이용하면 결국 평면 사이의 각도 정보, 다시 말해 평면 APQ와 z=0 평면 사이의 각도를 구할 수 있는 기반이 된다.

아까도 그렇지만 핵심내용만 빼고 나머진 ㄹㅇ 그럴듯하게쓰네기본적인 머리가 좋은분인듯
사실 전체적으로 대칭되진 않음

포기gpt임 아님 걍 주워들은거쓴거임?
모르는 상태에서 관련 표현 기억하고 적재적소에 글쓰는거 보면 ㄹㅇ 똑똑한듯
사실싹다지피티임난정사영이뭔지도모름

에휴이 은근 기대했는데나 풀고있음
포기
정답 10
아 아닌가
1. 원 C의 반지름과 삼각형 APQ의 변 길이:
원 C의 지름 AB가 2이고, 두 구의 반지름이 같으므로 원 C의 반지름은 1입니다.삼각형 APQ가 정삼각형이고, 점 P는 구 S 위의 점이므로 AP = AQ = PQ입니다.점 P는 구 S 위의 점이므로 AP = AQ = BP = 2입니다.따라서 삼각형 APQ의 변 길이는 2입니다.
2. 삼각형 OOA의 정사영 넓이:
두 평면 OAP, OAQ가 수직이므로, 삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 평면 OAQ 위로의 정사영 넓이의 합은 삼각형 OOA의 넓이와 같습니다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 삼각형 OOA의 평면 OAQ 위로의 정사영 넓이의 합이 1이므로, 삼각형 OOA의 넓이는 1입니다.삼각형 OOA는 이등변삼각형이고, OA = 2이므로 넓이는 (1/2) * 2 * 2 * sin(∠AOO) = 1입니다.따라서 ∠AOO = 30°입니다.
3. 원 C와 평면 APQ가 이루는 예각:
원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 할 때, cosθ = (정사영의 넓이) / (삼각형 OOA의 넓이)입니다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이는 (1/2) * 2 * 2 * cos(30°) = √3입니다.삼각형 OOA의 평면 OAQ 위로의 정사영 넓이는 (1/2) * 2 * 2 * cos(30°) = √3입니다.따라서 cosθ = (√3 + √3) / 1 = 2√3입니다.
4. 45cosθ의 값:
45cosθ = 45, (2√3) = 90√3입니다.
결론: 45cosθ = 90√3입니다.
풀이:
1. 구의 반지름 및 O₁O₂ 길이 계산:
원 C의 반지름은 1이고, AB가 지름이므로 구의 반지름은 √3입니다.O₁O₂ = 2√2 입니다.
2. 삼각형 O₁O₂A 넓이 계산:
삼각형 O₁O₂A의 넓이는 (1/2) * 2√2 * 1 = √2 입니다.
3. 정사영 넓이 합 이용:
두 정사영 넓이 합이 1이므로, √2 cosα + √2 cosβ = 1 입니다. (여기서 α와 β는 각각 평면 O₁AP와 O₂AQ가 O₁O₂A와 이루는 각입니다.)두 평면이 수직이므로 cosβ = sinα이고, √2 cosα + √2 sinα = 1 입니다.
4. cosα 및 sinα 계산:
위 식을 제곱하면 2cos²α + 2sin²α + 4sinαcosα = 1 이고, 2 + 4sinαcosα = 1 이므로, sinαcosα = -1/4 입니다.(cosα - sinα)² = cos²α + sin²α - 2sinαcosα = 1 - 2(-1/4) = 3/2 이므로, cosα - sinα = ±√(3/2) 입니다.cosα + sinα = 1/√2 이므로, cosα = (1/√2 ± √(3/2))/2 이고, sinα = (1/√2 ∓ √(3/2))/2 입니다.
5. θ 계산:
평면 APQ와 원 C를 포함하는 평면이 이루는 각 θ는 α와 같습니다.cosθ = cosα 이므로, cos²θ = (1/2 ± 2√(3/2) * 1/√2 + 3/2)/4 = (2 ± √6)/4 입니다.
6. 45cos²θ 계산:
45cos²θ = 45 * (2 ± √6)/4 입니다.문제 조건에 맞는 답은 45 * (2 - √6)/4 = 15 입니다.
따라서 45cos²θ의 값은 15입니다.
◕‿◕
빨리 10만덕 줘ᓀ‸ᓂ

45 * (2 - √6)/4 = 15 무엇..몰라.AI가 그렇다잖아.◕‿◕
1. 삼각형 APQ의 성질:
삼각형 APQ는 정삼각형이므로, AP = PQ = QA입니다.AB가 원 C의 지름이므로, 각 APB = 90도입니다.따라서, 삼각형 APQ의 한 변의 길이는 2sin60° = √3입니다.
2. 구의 반지름:
두 구의 중심 O1, O2와 점 A를 연결하면, 삼각형 O1AO2는 이등변삼각형입니다.O1A = O2A = r (구의 반지름)O1O2 = 2rsin(θ/2) (θ는 각 O1AO2)삼각형 O1O2A의 넓이는 1/2 * AB * O1O2 * sin(θ) = 1/2 * 2 * 2rsin(θ/2) * sin(θ)입니다.두 평면 O1AP, O2AQ가 수직이므로, 삼각형 O1O2A의 평면 O1AP 위로의 정사영의 넓이와 평면 O2AQ 위로의 정사영의 넓이의 합은 삼각형 O1O2A의 넓이와 같습니다.따라서, 1/2 * 2 * 2rsin(θ/2) * sin(θ) = 1입니다.sin(θ) = 1/r이므로, r = √3입니다.
3. 각 θ:
삼각형 APQ의 넓이는 (√3/4) * (√3)² = 3√3/4입니다.원 C를 포함하는 평면과 평면 APQ가 이루는 각 θ에 대해, cosθ = (원 C의 넓이) / (삼각형 APQ의 넓이)입니다.원 C의 넓이는 πr² = π입니다.따라서, cosθ = π / (3√3/4) = 4π / (3√3)입니다.cos²θ = (4π / (3√3))² = 16π² / 27입니다.
4. 45cos²θ 값 계산:
45cos²θ = 45 * (16π² / 27) = 80π²/3 = 10입니다.
따라서, 45cos²θ의 값은 10입니다.
아무말대잔치ㄷㄷ
1. 문제 이해:
두 구 S가 만나서 생기는 원 C가 있고, 원 C의 지름이 AB(길이 2)이다.구 S 위의 점 P에 대해 직선 BP가 구 S와 만나는 점을 Q라고 할 때, 삼각형 APQ는 정삼각형이다.두 평면 OAP, OAQ가 수직이고, 삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 평면 OAQ 위로의 정사영 넓이의 합이 1이다.원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 할 때, 45cosθ 값을 구하는 문제이다.
2. 문제 해결:
두 구 S의 반지름의 길이를 r이라고 하자. 원 C의 반지름은 r이다.삼각형 APQ가 정삼각형이므로, ∠APQ = 60°이다.두 평면 OAP와 OAQ가 수직이므로, ∠POQ = 90°이다.점 P, Q는 구 S 위의 점이므로, OP = OQ = r이다.점 A, B는 원 C 위의 점이므로, OA = OB = r이다.따라서, 삼각형 OAP, OAQ는 직각삼각형이다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이는 삼각형 OAP의 넓이와 같고, 평면 OAQ 위로의 정사영 넓이는 삼각형 OAQ의 넓이와 같다.삼각형 OOA의 넓이는 1/2 * OA * OB = 1/2 * r * r = 1/2r^2이다.삼각형 OAP의 넓이는 1/2 * OA * AP = 1/2 * r * r = 1/2r^2이다.삼각형 OAQ의 넓이는 1/2 * OA * AQ = 1/2 * r * r = 1/2r^2이다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 평면 OAQ 위로의 정사영 넓이의 합이 1이므로,
1/2r^2 + 1/2r^2 = 1 이다.
따라서 r^2 = 2이므로, r = √2이다.원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 하면,
cosθ = (OA * AP) / (OA * AP) = (r * r) / (r * r) = 1이다. 따라서 45cosθ = 45 * 1 = 45이다.
결론:
따라서 45cosθ 값은 10분의 3이다.
1. 삼각형 APQ의 성질:
삼각형 APQ는 정삼각형이므로, AP = PQ = AQ이다.AB가 원 C의 지름이므로, ∠APB = 90°이다.따라서, 삼각형 APB는 직각삼각형이다.
2. 구의 반지름:
삼각형 APQ가 정삼각형이고, AP = AQ 이므로, 구의 반지름을 r이라고 하면, AP = AQ = PQ = 2r/√3 이다.삼각형 APB에서 피타고라스 정리에 의해, AB² = AP² + BP² 이므로, 2² = (2r/√3)² + (2r/√3)² 이다.따라서, r = √3 이다.
3. 두 평면 사이의 각:
두 평면 O₁AP와 O₂AQ가 수직이므로, 삼각형 O₁O₂A의 평면 O₁AP 위로의 정사영의 넓이와 삼각형 O₁O₂A의 평면 O₂AQ 위로의 정사영의 넓이의 합이 1이라는 조건에서, 삼각형 O₁O₂A의 넓이는 1이다.삼각형 O₁O₂A에서, O₁A = O₂A = r = √3 이고, O₁O₂ = 2r = 2√3 이므로, 삼각형 O₁O₂A는 정삼각형이다.따라서, 삼각형 O₁O₂A의 넓이는 (√3/4) * (2√3)² = 3√3 이다.원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 하면, cosθ = (삼각형 APQ의 넓이) / (삼각형 O₁O₂A의 넓이) 이다.삼각형 APQ의 넓이는 (√3/4) * (2r/√3)² = √3 이다.따라서, cosθ = √3 / (3√3) = 1/3 이다.
4. 45cos²θ의 값:
45cos²θ = 45 * (1/3)² = 45 * (1/9) = 5 이다.
따라서, 45cos²θ의 값은 5이다.
뭔가 이건 맞는것 같은데
◕‿◕
노력상으로 5만덕이라도 주라
광기상드림
5만덕 달라구..
이틀뒤까지 정답자 안나오면 드림..
님 모밴 만들면 받을수 있나

그전에 신고하겟지 내가드림
ㅠㅠ
정사영 합 1조건에서 막혔는데 힌트 있나요
이쯤에서 gg합니다..
첫번째그림 AB 지나는 원/반지름 2/sqrt3이 이해가안됩니다..
what..
AB 지나는 단면에서
원이 저그림처럼 생길수가없음
30
윗댓참조..
B랑 Q는 달라야하나여
네
어렵네요 아까 한 30분 째 고민했는데 O1O2A의 O1AP 위 정사영 각도에서 막혔습니다
60도랑 45도가 나와버린.. 좀 이따 다시 풀어봐야겠어요
혹시 틀렸을까요...?
제가 의도한 풀이와는 다릅니다..
구의 반지름 값이 달라요
PQ가 즉각 나오진 않을거에요
하 미적러인데 논술 때려칠까요.. 틀려서 슬프네요

의뱃 ㄱㅁ아고 실수한 게 보이긴 하는데 이닦고 한번 더 풀어볼래요
근데 고쳐도 27나와요 ㅠ
반지름이 루트 11/루트6... 첨부터 다시 풀어봐야겠어요
B가 PQ의 중심이 아닐거에요
9
10만덕은 양심적으로다가 안받겟읍니다
포기선언..
그냥 10만덕 다 주면 어떨까◕‿◕
5만덕 마저 주라ᓀ‸ᓂ

차단함님 총합 6만 받았음
그럼 4만덕 주면 되겠네◕‿◕
˃ᯅ˂
ᓀ‸ᓂ