-
지금생각하면 노베현역이 미적을 한건 미친짓이었음 0 0
선행 1도 안돼있었고 겨울에 미적 첫바퀴를 돌렸는데 이땐 졸라 대충 하기도 했고...
-
ㅈㄱㄴ
-
이거 고경되나요 0 0
진지합니다
-
설대 404.7 어디가요? 0 0
이과예요
-
2026 수능 국/수 크럭스 테이블 :...
-
대학생분들 취업 0 0
고등학교 졸업하고 알바만하면서 허송세월 보내다가 23살에 대학교1학년 들어가게...
-
난 진짜 유명한 여미새임 0 1
fact
-
수학 84였으면 경영되나 0 0
각변환 8번 심지어 마킹실수임 슈발!!!
-
조금 우울한 밤 0 0
난 현역때 이미 내가 다니고 있는 건대 성적이 나왔는데 내가 올해 경희대를 붙지...
-
제가 제일 관심있는 세 전공인데 각각 합격확률 좀 알려주심 감사하겠습니다
-
홍대 낮공 모의지원했는데 0 0
스나이퍼는 87프로 뜨고 텔그는 32뜨는게맞아요? ㅠㅠ 보통 이럴땐 어느쪽이 더 맞는걸까요..
-
지금 메가 후한 거예요? 짠 거예요? 제가 수시가 남아 있어서 메가 무료로 주는...
-
내신은 3-2 까지 포함 1.6 초반 정도라 고대식으로는 1.4 후~ 1.5초 정도...
-
나 설사갈래 3 0
설사범 보내줘
-
슈냥님 제꺼도 봐주세요 0 1
-
유니 추합 될거같긴 한데 6 0
다음주 2개중애서 최초합 하나 건지고 마음 편해지고 싶은데 욕심인가...
-
유 빈 풋잇 윗 마 싯 저스트 웨이 투 롱
-
진학사 성의 후함? 0 1
성대는 아직 부정확한가...?
-
언매 (1) 표점 133 백분위 96 미적 (2) 표점 127 백분위 94 영어...
-
올해 전형이 바뀌어서 컷이 많이 달라지겠지만 이정도면 써볼법은 할까요...? ㅠ
-
덕코 주고 가
-
중대 or 강대 0 0
중대를 들어가면 학비가 500정도지만 강대기숙은 무려 교습비 85퍼 +교재비 50퍼 장학인데 흠…
-
이거 고대 경영이 될까요? 4 0
영어랑 탐구를 좀 못봐서... 지금 진학사 6칸 메가 합격률 50퍼로 소신이던데 될까요?
-
왤케 뒤지고싶지 1 1
제발
-
서울대식 398 3 0
자연대 중 되는과 있나요 ?
-
성대 약대 0 0
환산점수가 텔그에서 고속 진학사에 비해 훨씬 낮게 찍히는데 이유가 뭔가요? 과티...
-
서울대 원하면 경제해라 15 2
빈말은 안한다 사문할바에 경제해라
-
님들이라면 어디씀 ++ 전자는 6칸인데 후자는 5칸임
-
서울대식 400.x 3 0
문과 어디까지 가능할까요?
-
미적 96인데 서성한 가능? 0 0
사실 내 성적은 아니고 친구 성적임
-
삼반수 포텐 평가점.. 0 0
차례대로 작수 올수고요 7월말부터 반수했는데요.. 내년 마지막으로 메디컬가고싶어서...
-
상반기 커리훈수좀 0 0
삼수고 언미생윤사문 할겁니다. 국어 : 코동욱 일클(독서 발췌 수강)&정석민 비독원...
-
연도별 출생아들끼리의 능력치 분포 차이는 존재할까 6 0
예를 들어 특정한 연도 출생아들 중 그림을 잘 그리는 사람이 더 많다든지 XX년생...
-
입시상담 받는게 좋을까요 1 0
수능 엄청 잘본건 아닌데 라인이 애매해서 무조건 받는게 좋으려나요
-
성대 변표는 불이겟지 0 0
언제나오려나ㅜ
-
성대 낙지랑 스나 좀 봐주세요 0 0
뭐가 맞는 걸까요? 글로벌경영 스나는 91프로로 나오고 낙지는 2칸도 겨우...
-
다른 가족 보니까 눈물난다 2 1
다른 화목한 가족 보다가 개작살난 우리 가족 보면 진짜 눈물난다.. 가정사를 자세히...
-
성대식 981 1 0
가군 성대식 981 약대됨?
-
딱히 의미없나요
-
6잘9망수잘 성적인증 0 0
6모 9모는 성적표 받자마자 찢어버려서 사진이 없음 ㅈㅅ; 23234였음ㅋㅋ 수능...
-
원래 은양 이거 금지어였는데 6 2
어느샌가 풀려 있었음
-
요상하게 04옵창이 많긴 한듯 6 0
03 05랑 비교해도 유독
-
라인 잡아주세요 0 0
메디컬 끝자락이라도 가고싶어요...
-
걍 나다군 둘다 성대 박을까 3 1
나군에 서울대 스나는 못할거 같고
-
한문 ㄷ 라틴어 0 0
뭘 더 배우고 싶음뇨?
-
김성은 현강 자료 0 0
현강 워크북 제공된다고 하는데 어떰?
-
그래보임 3 0
안그래보임
-
산출식에는 과탐은 최대 5퍼가산이라는데 이게 적용된걸까요?
-
김승리라는 이름이 (전)빅뱅의 누군가를 연상시킴 2 1
심지어 좀 닮았어
-
"고"자 들어간 말만 봐도 무서움 15 1
으아아아악
이거도조절실패함..
12
64
차피풀이없으면안드림뇨
개쉽네ㅋㅋㅋ 3번
15
1/루트3이라 맞음
외쳐라무적엘지
풀이없음안드림뇨..
20
개빡세보이는데...
30
풀이동반
AB를 지름으로 하는 원 C를 기준으로 좌표를 잡음. A는 (-1,0,0), B는 (1,0,0)으로 두고, 두 구의 중심 O₁, O₂는 각각 (0,0,r), (0,0,-r)로 설정함. 원 C는 z=0 평면 위에 있고, APQ는 정삼각형이므로 평면 APQ를 정의할 수 있음. O₁AP, O₂AQ가 O₁O₂A에 수직이므로 P와 Q는 z축 기준 대칭 위치에 잡힘. 평면 APQ의 법선벡터 구하고, z=0 평면의 법선벡터와 이루는 각을 내적 공식으로 구함.
오 되게 그럴듯한데
안타깝지만 핵심키워드가 없어서 ㄴㅇㅈ
ㄱㄷ
외부축설정 어케됐는지 모르겠음,
정사영합 어떻게 썼는지 확인하면 ㅇㅈ
왜 45일까
외부축은 AB를 지름으로 하는 원을 기준으로 잡는다. A와 B를 각각 x축 위의 -1과 1로 두면, 중점이 원점이 되고, 자연스럽게 z축 방향으로 두 구의 중심인 O₁과 O₂를 대칭으로 둘 수 있다. 그래서 O₁은 z축 위 r만큼 위에, O₂는 r만큼 아래에 놓인다. 이 구조로 좌표계를 설정하면 도형 전체가 대칭이 되고 계산이 편해진다.
이제 정사영 넓이 조건을 보면, 삼각형 O₁AP와 O₂AQ의 실제 넓이를 기준으로 각각을 기준 평면인 O₁O₂A 평면 위로 정사영했을 때, 그 넓이의 합이 1이 되도록 주어졌다. 정사영 넓이는 각각의 실제 넓이에 평면 사이 각도의 코사인값을 곱한 것으로 계산된다. 따라서 두 삼각형의 정사영 넓이를 각각 실제 넓이 × 코사인값으로 표현하고, 그 둘을 더해서 1이라는 조건을 만들 수 있다. 이 조건을 이용하면 결국 평면 사이의 각도 정보, 다시 말해 평면 APQ와 z=0 평면 사이의 각도를 구할 수 있는 기반이 된다.

아까도 그렇지만 핵심내용만 빼고 나머진 ㄹㅇ 그럴듯하게쓰네기본적인 머리가 좋은분인듯
사실 전체적으로 대칭되진 않음

포기gpt임 아님 걍 주워들은거쓴거임?
모르는 상태에서 관련 표현 기억하고 적재적소에 글쓰는거 보면 ㄹㅇ 똑똑한듯
사실싹다지피티임난정사영이뭔지도모름

에휴이 은근 기대했는데나 풀고있음
포기
정답 10
아 아닌가
1. 원 C의 반지름과 삼각형 APQ의 변 길이:
원 C의 지름 AB가 2이고, 두 구의 반지름이 같으므로 원 C의 반지름은 1입니다.삼각형 APQ가 정삼각형이고, 점 P는 구 S 위의 점이므로 AP = AQ = PQ입니다.점 P는 구 S 위의 점이므로 AP = AQ = BP = 2입니다.따라서 삼각형 APQ의 변 길이는 2입니다.
2. 삼각형 OOA의 정사영 넓이:
두 평면 OAP, OAQ가 수직이므로, 삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 평면 OAQ 위로의 정사영 넓이의 합은 삼각형 OOA의 넓이와 같습니다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 삼각형 OOA의 평면 OAQ 위로의 정사영 넓이의 합이 1이므로, 삼각형 OOA의 넓이는 1입니다.삼각형 OOA는 이등변삼각형이고, OA = 2이므로 넓이는 (1/2) * 2 * 2 * sin(∠AOO) = 1입니다.따라서 ∠AOO = 30°입니다.
3. 원 C와 평면 APQ가 이루는 예각:
원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 할 때, cosθ = (정사영의 넓이) / (삼각형 OOA의 넓이)입니다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이는 (1/2) * 2 * 2 * cos(30°) = √3입니다.삼각형 OOA의 평면 OAQ 위로의 정사영 넓이는 (1/2) * 2 * 2 * cos(30°) = √3입니다.따라서 cosθ = (√3 + √3) / 1 = 2√3입니다.
4. 45cosθ의 값:
45cosθ = 45, (2√3) = 90√3입니다.
결론: 45cosθ = 90√3입니다.
풀이:
1. 구의 반지름 및 O₁O₂ 길이 계산:
원 C의 반지름은 1이고, AB가 지름이므로 구의 반지름은 √3입니다.O₁O₂ = 2√2 입니다.
2. 삼각형 O₁O₂A 넓이 계산:
삼각형 O₁O₂A의 넓이는 (1/2) * 2√2 * 1 = √2 입니다.
3. 정사영 넓이 합 이용:
두 정사영 넓이 합이 1이므로, √2 cosα + √2 cosβ = 1 입니다. (여기서 α와 β는 각각 평면 O₁AP와 O₂AQ가 O₁O₂A와 이루는 각입니다.)두 평면이 수직이므로 cosβ = sinα이고, √2 cosα + √2 sinα = 1 입니다.
4. cosα 및 sinα 계산:
위 식을 제곱하면 2cos²α + 2sin²α + 4sinαcosα = 1 이고, 2 + 4sinαcosα = 1 이므로, sinαcosα = -1/4 입니다.(cosα - sinα)² = cos²α + sin²α - 2sinαcosα = 1 - 2(-1/4) = 3/2 이므로, cosα - sinα = ±√(3/2) 입니다.cosα + sinα = 1/√2 이므로, cosα = (1/√2 ± √(3/2))/2 이고, sinα = (1/√2 ∓ √(3/2))/2 입니다.
5. θ 계산:
평면 APQ와 원 C를 포함하는 평면이 이루는 각 θ는 α와 같습니다.cosθ = cosα 이므로, cos²θ = (1/2 ± 2√(3/2) * 1/√2 + 3/2)/4 = (2 ± √6)/4 입니다.
6. 45cos²θ 계산:
45cos²θ = 45 * (2 ± √6)/4 입니다.문제 조건에 맞는 답은 45 * (2 - √6)/4 = 15 입니다.
따라서 45cos²θ의 값은 15입니다.
◕‿◕
빨리 10만덕 줘ᓀ‸ᓂ

45 * (2 - √6)/4 = 15 무엇..몰라.AI가 그렇다잖아.◕‿◕
1. 삼각형 APQ의 성질:
삼각형 APQ는 정삼각형이므로, AP = PQ = QA입니다.AB가 원 C의 지름이므로, 각 APB = 90도입니다.따라서, 삼각형 APQ의 한 변의 길이는 2sin60° = √3입니다.
2. 구의 반지름:
두 구의 중심 O1, O2와 점 A를 연결하면, 삼각형 O1AO2는 이등변삼각형입니다.O1A = O2A = r (구의 반지름)O1O2 = 2rsin(θ/2) (θ는 각 O1AO2)삼각형 O1O2A의 넓이는 1/2 * AB * O1O2 * sin(θ) = 1/2 * 2 * 2rsin(θ/2) * sin(θ)입니다.두 평면 O1AP, O2AQ가 수직이므로, 삼각형 O1O2A의 평면 O1AP 위로의 정사영의 넓이와 평면 O2AQ 위로의 정사영의 넓이의 합은 삼각형 O1O2A의 넓이와 같습니다.따라서, 1/2 * 2 * 2rsin(θ/2) * sin(θ) = 1입니다.sin(θ) = 1/r이므로, r = √3입니다.
3. 각 θ:
삼각형 APQ의 넓이는 (√3/4) * (√3)² = 3√3/4입니다.원 C를 포함하는 평면과 평면 APQ가 이루는 각 θ에 대해, cosθ = (원 C의 넓이) / (삼각형 APQ의 넓이)입니다.원 C의 넓이는 πr² = π입니다.따라서, cosθ = π / (3√3/4) = 4π / (3√3)입니다.cos²θ = (4π / (3√3))² = 16π² / 27입니다.
4. 45cos²θ 값 계산:
45cos²θ = 45 * (16π² / 27) = 80π²/3 = 10입니다.
따라서, 45cos²θ의 값은 10입니다.
아무말대잔치ㄷㄷ
1. 문제 이해:
두 구 S가 만나서 생기는 원 C가 있고, 원 C의 지름이 AB(길이 2)이다.구 S 위의 점 P에 대해 직선 BP가 구 S와 만나는 점을 Q라고 할 때, 삼각형 APQ는 정삼각형이다.두 평면 OAP, OAQ가 수직이고, 삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 평면 OAQ 위로의 정사영 넓이의 합이 1이다.원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 할 때, 45cosθ 값을 구하는 문제이다.
2. 문제 해결:
두 구 S의 반지름의 길이를 r이라고 하자. 원 C의 반지름은 r이다.삼각형 APQ가 정삼각형이므로, ∠APQ = 60°이다.두 평면 OAP와 OAQ가 수직이므로, ∠POQ = 90°이다.점 P, Q는 구 S 위의 점이므로, OP = OQ = r이다.점 A, B는 원 C 위의 점이므로, OA = OB = r이다.따라서, 삼각형 OAP, OAQ는 직각삼각형이다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이는 삼각형 OAP의 넓이와 같고, 평면 OAQ 위로의 정사영 넓이는 삼각형 OAQ의 넓이와 같다.삼각형 OOA의 넓이는 1/2 * OA * OB = 1/2 * r * r = 1/2r^2이다.삼각형 OAP의 넓이는 1/2 * OA * AP = 1/2 * r * r = 1/2r^2이다.삼각형 OAQ의 넓이는 1/2 * OA * AQ = 1/2 * r * r = 1/2r^2이다.삼각형 OOA의 평면 OAP 위로의 정사영 넓이와 평면 OAQ 위로의 정사영 넓이의 합이 1이므로,
1/2r^2 + 1/2r^2 = 1 이다.
따라서 r^2 = 2이므로, r = √2이다.원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 하면,
cosθ = (OA * AP) / (OA * AP) = (r * r) / (r * r) = 1이다. 따라서 45cosθ = 45 * 1 = 45이다.
결론:
따라서 45cosθ 값은 10분의 3이다.
1. 삼각형 APQ의 성질:
삼각형 APQ는 정삼각형이므로, AP = PQ = AQ이다.AB가 원 C의 지름이므로, ∠APB = 90°이다.따라서, 삼각형 APB는 직각삼각형이다.
2. 구의 반지름:
삼각형 APQ가 정삼각형이고, AP = AQ 이므로, 구의 반지름을 r이라고 하면, AP = AQ = PQ = 2r/√3 이다.삼각형 APB에서 피타고라스 정리에 의해, AB² = AP² + BP² 이므로, 2² = (2r/√3)² + (2r/√3)² 이다.따라서, r = √3 이다.
3. 두 평면 사이의 각:
두 평면 O₁AP와 O₂AQ가 수직이므로, 삼각형 O₁O₂A의 평면 O₁AP 위로의 정사영의 넓이와 삼각형 O₁O₂A의 평면 O₂AQ 위로의 정사영의 넓이의 합이 1이라는 조건에서, 삼각형 O₁O₂A의 넓이는 1이다.삼각형 O₁O₂A에서, O₁A = O₂A = r = √3 이고, O₁O₂ = 2r = 2√3 이므로, 삼각형 O₁O₂A는 정삼각형이다.따라서, 삼각형 O₁O₂A의 넓이는 (√3/4) * (2√3)² = 3√3 이다.원 C를 포함하는 평면과 평면 APQ가 이루는 예각의 크기를 θ라고 하면, cosθ = (삼각형 APQ의 넓이) / (삼각형 O₁O₂A의 넓이) 이다.삼각형 APQ의 넓이는 (√3/4) * (2r/√3)² = √3 이다.따라서, cosθ = √3 / (3√3) = 1/3 이다.
4. 45cos²θ의 값:
45cos²θ = 45 * (1/3)² = 45 * (1/9) = 5 이다.
따라서, 45cos²θ의 값은 5이다.
뭔가 이건 맞는것 같은데
◕‿◕
노력상으로 5만덕이라도 주라
광기상드림
5만덕 달라구..
이틀뒤까지 정답자 안나오면 드림..
님 모밴 만들면 받을수 있나

그전에 신고하겟지 내가드림
ㅠㅠ
정사영 합 1조건에서 막혔는데 힌트 있나요
이쯤에서 gg합니다..
첫번째그림 AB 지나는 원/반지름 2/sqrt3이 이해가안됩니다..
what..
AB 지나는 단면에서
원이 저그림처럼 생길수가없음
30
윗댓참조..
B랑 Q는 달라야하나여
네
어렵네요 아까 한 30분 째 고민했는데 O1O2A의 O1AP 위 정사영 각도에서 막혔습니다
60도랑 45도가 나와버린.. 좀 이따 다시 풀어봐야겠어요
혹시 틀렸을까요...?
제가 의도한 풀이와는 다릅니다..
구의 반지름 값이 달라요
PQ가 즉각 나오진 않을거에요
하 미적러인데 논술 때려칠까요.. 틀려서 슬프네요

의뱃 ㄱㅁ아고 실수한 게 보이긴 하는데 이닦고 한번 더 풀어볼래요
근데 고쳐도 27나와요 ㅠ
반지름이 루트 11/루트6... 첨부터 다시 풀어봐야겠어요
B가 PQ의 중심이 아닐거에요
9
10만덕은 양심적으로다가 안받겟읍니다
포기선언..
그냥 10만덕 다 주면 어떨까◕‿◕
5만덕 마저 주라ᓀ‸ᓂ

차단함님 총합 6만 받았음
그럼 4만덕 주면 되겠네◕‿◕
˃ᯅ˂
ᓀ‸ᓂ