이렇게 푸는거 맞음?
게시글 주소: https://orbi.kr/00072850636
정의적으로 틀린거있음?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
처음에도 ㅈㄴ 슬펐지만 너의 빈자리가 이렇게 클 줄 몰랐음 부럽다 부러워
-
메디컬 아니고 그냥 과 높이고 싶어서... 에바임?
-
온도도 적당적당한게 기분이 좋네요
-
컷 예상좀 2
언매 70 기하 76 생윤38 사문 47
-
월요일이 무섭다 4
오늘이 미국 휴장이라서 더 무섭다
-
귀엽긴한데 너무 멍청하고 이상하게생김 다음부터 오르비북스 택배는 학원 말고 집으로 배송시켜야겟다
-
아침에 일어나니까 근육통 + 열 38.N도ㅋㅋ
-
바쁘다바빠ㅅㅂ
-
똥 다 쌌음 3
지금부터 진짜 휴릅 어 중간고사 성적 유지하고 다시 놀려줄게 이 정파요미들아 하하하
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
떨어지는데 그래도 계속 하는게 맞겠죠
-
하 누가 시간만다했냐 지금 기출 실전개념 6평까지 끝낼까말까한데 ㅅㅂㅋㅋㅋ
-
무기무기 7
화학화학
-
다시휴릅 0
사유: 다음주 시험임
-
평가원 #~#
-
일단 생1은 박고 시작할껀데 화1이랑 지1이랑 고민되네요.. 흠..
-
4덮 수학 1
나만 9번보다 18번에서 더 당황함? 기출에서 안 쓰인 소재라 그런가..
lim(n→∞) a[n] = lim(n→∞) n²/(16n² - 4) = 1/16
∑(n=1~∞) (a[n] - 1/16)
= ∑(n=1~∞) (a[n] - n²/(16n² - 4)) + ∑(n=1~∞) {n²/(16n² - 4) - 1/16}
= 3/8 - ∑(n=1~∞) {n²/(16n² - 4) - 1/16}
∑(k=1~n) n²/(16n² - 4)
= ∑(k=1~n) {1/16 + 1/4 * 1/(16n² - 4)}
= ∑(k=1~n) {1/16 + 1/16 * 1/(2n + 1)(2n - 1)}
= ∑(k=1~n) [1/16 + 1/32 * {1/(2n - 1) - 1/(2n + 1)}]
= 1/16n + 1/32(1 - 1/(2n + 1))
→ ∑(k=1~n) {n²/(16n² - 4) - 1/16} = 1/32(1 - 1/(2n + 1))
∑(n=1~∞) {n²/(16n² - 4) - 1/16} = 1/32
∑(n=1~∞) (a[n] - 1/16) = 3/8 + 1/32 = 13/32
lim(n→∞) {a[n] + ∑(k=1~n)(a[k] - 1/16)} = 1/16 + 13/32 = 15/32