확통 간단한 문제 뭐가 틀린건가요 ㅠ
게시글 주소: https://orbi.kr/00072813403
문제
abcd 포함 8명 있습니다
원순열로 탁자에 앉는 거고 ab 는 이웃 cd도 서로 이웃해야한다
a는 c와 이웃하지 않고 b와d는 이웃하지 않는다
저는 여기서 ab cd 묶어서 붙어있는 경우랑 아닌 경우 나눴고
떨어져있으면 나머지 4명 앉히고 그 사이사이에 2팀 앉히고 자리바꾸는거까지 해서 288
붙어있으면 ab cd, ba dc 이렇게 2개 밖에 안나와서 2x나머지 4명 4! 해서 48가지
로 나왔는데 답은 384네요;; 뭐가 틀린거죠
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무보정 1컷 41인데 머임. 정답률 50퍼 안되는게 6문제밖에 없음 생2 기하...
-
난 반팔에 긴바진데.. 모든 계절을 다 볼 수 있음뇨
-
2등급의 스펙트럼은 정말 넓은거 같음 동네 학원에서 내신 변형 문제만 슥슥 풀어도 나와서 그런가
-
김기현 파데 킥오프 커리 타고 3모 찍맞 없이 4컷 나온 개허수입니다... 킥오프...
-
기하런 2
작수 미적 15 21 22 28 29 30틀렸는데 지금이라도 기하런치는게 맞을까요?...
-
통후른지 탕후른지 13
산삼마냥 생긴 그 기괴 생명체는 왜 자꾸 뜨는거죠
-
자꾸 와서 핑프마냥 질문하는 친구 있는데 오늘은 또 방학에 확통 기하 병행하는 거...
-
작수 백분위 83에 이번 4덮 82점 맞았는데 rnp부터 할까요 아니면 바로 브크 들어갈까요??
-
이번 더프도 그렇고 작수도 그렇고 같은 답 연속해서 나오는거 너무 많은것 같은데...
-
알려주십쇼
-
저녁이구나
-
보통 짜잘한 거 까지 다 외워야 하나요?? 아님 큰 틀만 잡으면 됨??
-
지구과학쌤중에 수특 5번 풀라는데 진짜 그정도로 풀어야하나요?
-
반나절 처남았노 ㅅㅂㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
인물 정서 대립어 감정표현 신경쓰면서 읽으심? 아님 일단 눈으로 쭉 읽고 바로...
-
문학 지문을 읽으면서 필요한 부분에 표시를 해도 좋고 표시를 하지 않아도 좋아요....
-
머가 더 어렵나요 둘 다 잇는데 뭐 할지 고민중인데 더 어려운거에 투표해주세요
-
‘가족’ 두글자 놓치면 틀리는 ㅈ같음이 문제임
-
아직 쉬운 도표 중이라 어려운걸 전혀 모르는데 뒷부분은 좀 어려운거 나오나요?...
-
바로 스텝1로 넘어가는게 좋을까요?
-
⢀⢀⢀⠒⠛⠟⠓⠄⢀⢀⢀⢀⢀⢀⢀⢀⠿⠟⠛⠛⠛⠻⠿⢿⣿⢀⢀⠄⢀⠒⠒⠂⢀⠄⢀⢀⢀⢀⢀⢀⡠⢀⢀⠉⢀⠉⠐...
-
코르코딜로가 다 이기는데 말이지
-
어떰? 4
ㅎㅎ
-
심멘오직심멘 11
심멘오직심멘 본인 고전소설 같은 거 못 햇음 그래서 마법천자문처럼 읽기 빡센글은...
-
더프 보정 컷이 마냥 후한게 아니엇음요 그 예를들어 미적 보정 1컷이 72이면 그건...
-
같이 밥먹을사람 없어서 15
매점에서 때우는사람이 있대요.. 어 형이야
-
이번덮도 1번찍고 틀림 아니 다시생각해보니까 황제 배만든거 잘했다매 ㅅ발라마
-
서성한 자연계 쓸 생각이고 사문 동사로 수능 볼 생각입니다. 생윤보다 동사의 불리한...
-
연계 대비 안 햇다고 가정햇을 때 아예 ebs 안 봣다고 햇을 때
-
겨울 노베에서 올오카 듣고 지금 tim까지 하고 있는 현역입니당. 3모 78점 박고...
-
보정 후하다매요ㅠㅠ 1좀해보자
-
4덮 화작 66 1
보정/무보정 몇등급 예상하시나요
-
안경 맞췄는데 0
개잘보임
-
야이 기요마 7
이 기요마
-
운동끝 4
밥먹어야지
-
오랜만에 아이스크림을 먹는거임
-
오르비보느라 몰랏네..ㅋㅋㅋㅋㅋ ㅋㅋ
-
5000짜리 캬캬
-
난 현우진이 삼각함수최대최소를합성으로 풀어줘서 그것만 아는데 아예 합성을 알아야함?
-
역시 사람 안 바뀌는군
-
하위권 학생들 과외를 진행하며 느낀 가장 큰 문제점은 노베들이 글을 읽고 이해를...
-
재수때 생각했던건데, 아침부터 공부하기 싫을 때는 그냥 본인이 가장 좋아하고 그나마...
-
오래간만에 시골에서 열심히 공부하는 N수학생들 대부분이 1,2등급이 되었네요....
-
엄기은쌤 피크 도착했는데에에에ㅔ
-
20%도 안될듯
-
못하는건 아닌데 풀면서도 느는 느낌이 안들어요.. 뭐가 문젤까요 n제를 풀어야되나
-
나는 1컷 44 2컷 41 같은데 더 높으려나??
-
4덮 탐구 3
전 생윤 사문인데 둘다 작수보다 어려웠던거같은데 아닌가여
-
컷 예상좀 2
언매 70 기하 76 생윤38 사문 47
붙어있는 케이스에서
dcba cdab도 가능하지 않나요
2개가 사실상 위 케이스에 포함되는거 아닌가요?? 원순열이니 두 팀을 앉히고 위에 2케이스면 자연스레 아까 말한 케이스가 중복되는거 아닌가요
두 팀을 먼저 고정시키고
나머지를 순서 고려해서 4! 하신 거잖아요?
그런데 두 팀을 고정시킬 때
ab조가 왼쪽에 오는 경우와
cd조가 왼쪽에 오는 경우는
다른 경우니까요
아 이해갔습니다 이웃하는 두 쌍을 나열하는 경우의 수를 셀떄 2를 곱해야 하는군요
이웃하는거끼리 이웃할떄 그 4명을 한 팀으로 보는건가요
안녕하세요! 문제 풀이 과정을 잘 분석하셨네요. 오류가 발생한 부분을 정확히 찾아내고 설명해 드리겠습니다.
문제 분석:
총 8명 (a, b, c, d, e, f, g, h)
원순열 배열
(ab)는 이웃
(cd)는 이웃
a와 c는 이웃하지 않음
b와 d는 이웃하지 않음
접근 방식 검토:
(ab)를 하나의 묶음 X, (cd)를 하나의 묶음 Y로 생각하는 접근은 좋습니다. 나머지 4명(e, f, g, h)과 함께 총 6개의 단위(X, Y, e, f, g, h)를 배열하는 문제로 볼 수 있습니다.
사용자 풀이 분석:
Case 1: X와 Y가 이웃하지 않는 경우 (떨어져 있는 경우)
나머지 4명(e, f, g, h)을 먼저 원형으로 배열: (4-1)! = 3! = 6가지.
4명 사이의 4개의 공간에 X와 Y를 배치: P(4, 2) = 4 * 3 = 12가지.
X의 내부 배열 (ab, ba): 2가지.
Y의 내부 배열 (cd, dc): 2가지.
총 경우의 수: 6 * 12 * 2 * 2 = 288가지.
이 계산은 정확합니다. X와 Y가 떨어져 있으면, a와 c가 이웃하거나 b와 d가 이웃할 가능성이 없습니다. (예: e X f Y g h ... 에서 X=ab, Y=cd 이면 b와 f, c와 f가 이웃하므로 a,c / b,d 이웃 조건은 자동으로 만족됩니다.)
Case 2: X와 Y가 이웃하는 경우 (붙어 있는 경우)
X와 Y를 하나의 큰 묶음 Z로 취급합니다. 이제 Z, e, f, g, h 총 5개의 단위를 원형으로 배열합니다.
배열 방법: (5-1)! = 4! = 24가지.
여기서 논리적 오류가 발생했습니다. Z 내부의 배열을 고려할 때, 제약 조건(a는 c와 이웃 X, b는 d와 이웃 X)을 적용해야 합니다.
Z는 X와 Y가 붙어있는 형태입니다. 가능한 내부 배열 조합은:
X=ab, Y=cd => (ab)(cd) 또는 (cd)(ab)
X=ba, Y=cd => (ba)(cd) 또는 (cd)(ba)
X=ab, Y=dc => (ab)(dc) 또는 (dc)(ab)
X=ba, Y=dc => (ba)(dc) 또는 (dc)(ba)
이제 각 조합에서 제약 조건을 확인합니다:
(ab)(cd): ... a b c d ... => b와 c가 이웃. a와 c는 이웃 아님. b와 d는 이웃 아님. (조건 만족)
(cd)(ab): ... c d a b ... => d와 a가 이웃. a와 c는 이웃 아님. b와 d는 이웃 아님. (조건 만족)
(ba)(cd): ... b a c d ... => a와 c가 이웃. (조건 위반)
(cd)(ba): ... c d b a ... => d와 b가 이웃. (조건 위반)
(ab)(dc): ... a b d c ... => b와 d가 이웃. (조건 위반)
(dc)(ab): ... d c a b ... => c와 a가 이웃. (조건 위반)
(ba)(dc): ... b a d c ... => a와 d가 이웃. a와 c는 이웃 아님. b와 d는 이웃 아님. (조건 만족)
(dc)(ba): ... d c b a ... => c와 b가 이웃. a와 c는 이웃 아님. b와 d는 이웃 아님. (조건 만족)
따라서 Z 내부에서 제약 조건을 만족하는 배열은 (ab)(cd), (cd)(ab), (ba)(dc), (dc)(ba) 이렇게 4가지입니다.
사용자께서는 "(ab)(cd), (ba)(dc) 이렇게 2개 밖에 안나와서" 라고 생각하신 부분에서 오류가 있었습니다. 아마 (cd)(ab) 와 (dc)(ba) 경우를 누락했거나, 제약 조건을 잘못 해석했을 수 있습니다. 예를 들어, (ab)(cd) 에서 b와 c가 이웃하는 것은 문제의 제약 조건(a-c 이웃X, b-d 이웃X)에 위배되지 않습니다.
Case 2의 올바른 계산: (5-1)! * (조건 만족하는 내부 배열 수) = 24 * 4 = 96가지.
결론:
Case 1 (X, Y 떨어져 있음): 288가지 (정확)
Case 2 (X, Y 붙어 있음): 96가지 (사용자 계산: 48가지, 오류 지점: 내부 배열 경우의 수)
총 경우의 수: 288 + 96 = 384가지
오류 요약:
묶음 (ab)와 (cd)가 이웃할 때, 내부 배열 [(ab), (ba)] 와 [(cd), (dc)] 의 조합 중 제약조건(a,c 이웃X / b,d 이웃X)을 만족하는 경우가 4가지[(ab)(cd), (cd)(ab), (ba)(dc), (dc)(ba)]인데, 이를 2가지로 잘못 계산한 것이 오류의 원인입니다.
이렇게 Gemini가 설명해줌ㅋㅋ
걍 간단하게 생각하면
a앉히고 옆에 b 앉히는거 2
남은자리에서 조건에 맞게 cd 붙여 앉히는거 8
나머지 4명 배열 24
2x8x24=384
저정도면 겁나 쉬운 문제인거죠..?
27번 정도니까 1분이내로 끊죠 보통
그리고 ab 이웃 cd 이웃 총 2쌍끼리도 이웃해야하는 경우면 2가지 경우의 수가 나오는게 맞는거죠.?
그 안에서 자리 바꾸는거 배제하구요 나열만
네 그거 2쌍+이웃 안할때6쌍이라 8쌍이요