무브
오르비
아톰
내 태그 설정
bdfh [1232233] · MS 2023 · 쪽지
게시글 주소: https://orbi.kr/00072801074
첫 풀이 5000덕 드리겠습니다!
+자작 아닙니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
자작 아니라는 표기가 있는 경우 보통 어떠한 문제인가요? 본고사나 퍼트넘?
보통 경시 문제를 변형하는 편입니다 :)
왜 익숙하게 생겻지 ㅋㅋㅋㅋ
(가) 조건으로 4ak<ak+ak+1+ak+2+ak+3<4ak+3이므로 4분의 네개 다 더한거는 ak+1orak+2이다
'유한집합' 임을 보이셔야 할 듯 합니다ㅠ
둘 다 무한집합이라면, a,b,c,d,e에 대해, a+b+c+d=4c, b+c+d+e=4c인 a,b,c,d,e가 존재한다. (대충 연속한 수열의 항들) 그런데 빼보면 e-a=0으로 수열이 증가수열임에 모순이다.
a,b,c,d,e가 존재하는 이유에 대한 언급이 필요할 듯 합니다ㅠ
(가), (나)조건에 의해 (T_n) := (a_n+a_(n+1)+a_(n+2)+a_(n+3))/4∈{a_(n+1),a_(n+2)}이다. (∵ a_n < T_n < a_(n+3)) 주어진 집합이 둘 다 무한 집합이라면, T_n=a_(n+2), T_(n+1)=a_((n+1)+1)인 n이 존재한다. 이러한 n에 대해 a_n+a_(n+1)+a_(n+2)+a_(n+3)=4*a_(n+2), a_(n+1)+a_(n+2)+a_(n+3)+a_(n+4)=4*a_(n+2) => a_(n+4)-a_n=0이고, 이는 (가)조건에 모순이다.
완벽합니다 :)
2026 수능D - 213
[끈기있는 수학] 성적향상 전문 - 언니/누나 같은 멘토이자 든든한 지원군
수리논술 4관왕, 대입수학 전문
서울대 과외
수학 전문 과외
레이첼 원어민 영어
경희대학교 일반대학원 영어영문학과
자작 아니라는 표기가 있는 경우 보통 어떠한 문제인가요? 본고사나 퍼트넘?
보통 경시 문제를 변형하는 편입니다 :)
왜 익숙하게 생겻지 ㅋㅋㅋㅋ
(가) 조건으로 4ak<ak+ak+1+ak+2+ak+3<4ak+3이므로 4분의 네개 다 더한거는 ak+1orak+2이다
'유한집합' 임을 보이셔야 할 듯 합니다ㅠ
둘 다 무한집합이라면,
a,b,c,d,e에 대해, a+b+c+d=4c, b+c+d+e=4c인 a,b,c,d,e가 존재한다. (대충 연속한 수열의 항들)
그런데 빼보면 e-a=0으로 수열이 증가수열임에 모순이다.
a,b,c,d,e가 존재하는 이유에 대한 언급이 필요할 듯 합니다ㅠ
(가), (나)조건에 의해
(T_n) := (a_n+a_(n+1)+a_(n+2)+a_(n+3))/4∈{a_(n+1),a_(n+2)}이다.
(∵ a_n < T_n < a_(n+3))
주어진 집합이 둘 다 무한 집합이라면,
T_n=a_(n+2), T_(n+1)=a_((n+1)+1)인 n이 존재한다.
이러한 n에 대해
a_n+a_(n+1)+a_(n+2)+a_(n+3)=4*a_(n+2), a_(n+1)+a_(n+2)+a_(n+3)+a_(n+4)=4*a_(n+2)
=> a_(n+4)-a_n=0이고, 이는 (가)조건에 모순이다.
완벽합니다 :)