무브
오르비
아톰
내 태그 설정
bdfh [1232233] · MS 2023 · 쪽지
게시글 주소: https://orbi.kr/00072801074
첫 풀이 5000덕 드리겠습니다!
+자작 아닙니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
자작 아니라는 표기가 있는 경우 보통 어떠한 문제인가요? 본고사나 퍼트넘?
보통 경시 문제를 변형하는 편입니다 :)
왜 익숙하게 생겻지 ㅋㅋㅋㅋ
(가) 조건으로 4ak<ak+ak+1+ak+2+ak+3<4ak+3이므로 4분의 네개 다 더한거는 ak+1orak+2이다
'유한집합' 임을 보이셔야 할 듯 합니다ㅠ
둘 다 무한집합이라면, a,b,c,d,e에 대해, a+b+c+d=4c, b+c+d+e=4c인 a,b,c,d,e가 존재한다. (대충 연속한 수열의 항들) 그런데 빼보면 e-a=0으로 수열이 증가수열임에 모순이다.
a,b,c,d,e가 존재하는 이유에 대한 언급이 필요할 듯 합니다ㅠ
(가), (나)조건에 의해 (T_n) := (a_n+a_(n+1)+a_(n+2)+a_(n+3))/4∈{a_(n+1),a_(n+2)}이다. (∵ a_n < T_n < a_(n+3)) 주어진 집합이 둘 다 무한 집합이라면, T_n=a_(n+2), T_(n+1)=a_((n+1)+1)인 n이 존재한다. 이러한 n에 대해 a_n+a_(n+1)+a_(n+2)+a_(n+3)=4*a_(n+2), a_(n+1)+a_(n+2)+a_(n+3)+a_(n+4)=4*a_(n+2) => a_(n+4)-a_n=0이고, 이는 (가)조건에 모순이다.
완벽합니다 :)
#공지 오르비 게시판 및 회원 관리법 (Horus Code) (1.1판)
#제휴사공지 [대성마이맥] ★입시 성공★ 대학 합격자 칼럼 게시판 OPEN 0
#국어#독학생#수학 미미미리 준비 하는 사람이 합-격-★ 2
#국어#독학생#수학 심멘이 배송해줌 16
16/09/23 20:25
0
여러가지 이유가 있었겠죠 하지만 이젠 고민을 다 놓아줘야겠어요 그만 걱정하자...
2026 수능D - 194
영어만점의대생
민사고 의대생 수과학과외
좋은 연이 닿기를 희망합니다
고등국어 학원 원장 출신입니다.
고등학교진짜영어쌤
고등 내신/수능 물리학1, 물리학2, 고급물리학, 일반물리학
자작 아니라는 표기가 있는 경우 보통 어떠한 문제인가요? 본고사나 퍼트넘?
보통 경시 문제를 변형하는 편입니다 :)
왜 익숙하게 생겻지 ㅋㅋㅋㅋ
(가) 조건으로 4ak<ak+ak+1+ak+2+ak+3<4ak+3이므로 4분의 네개 다 더한거는 ak+1orak+2이다
'유한집합' 임을 보이셔야 할 듯 합니다ㅠ
둘 다 무한집합이라면,
a,b,c,d,e에 대해, a+b+c+d=4c, b+c+d+e=4c인 a,b,c,d,e가 존재한다. (대충 연속한 수열의 항들)
그런데 빼보면 e-a=0으로 수열이 증가수열임에 모순이다.
a,b,c,d,e가 존재하는 이유에 대한 언급이 필요할 듯 합니다ㅠ
(가), (나)조건에 의해
(T_n) := (a_n+a_(n+1)+a_(n+2)+a_(n+3))/4∈{a_(n+1),a_(n+2)}이다.
(∵ a_n < T_n < a_(n+3))
주어진 집합이 둘 다 무한 집합이라면,
T_n=a_(n+2), T_(n+1)=a_((n+1)+1)인 n이 존재한다.
이러한 n에 대해
a_n+a_(n+1)+a_(n+2)+a_(n+3)=4*a_(n+2), a_(n+1)+a_(n+2)+a_(n+3)+a_(n+4)=4*a_(n+2)
=> a_(n+4)-a_n=0이고, 이는 (가)조건에 모순이다.
완벽합니다 :)