너는 문제를 푸는 사람이지 검토하는 사람이 아니다(25사관 22번)
게시글 주소: https://orbi.kr/00072793073
일단 조건 (나)를 보면 전년도 수능 22번에게서 영향을 받은 듯한 인상이 있다.
조건 (가)를 보면 h(x)는 f(x) 또는 g(x)이다. 이때 g(x)는 알려주지 않았다.
그러면 우리가 해야할 미션은 두가지임을 알 수 있다.
1. g(x)의 특정
2. h가 어느 지점에서 f이고 어느 지점에서 g인지 찾기
수학적 능력이 부족해 이 문제를 풀지 못하더라도
뭘 해야하는지 정도는 알아야 한다.
가지임을 알 수 있다.
(가)는 사실 'h(x)는 f(x) 또는 g(x)이다.' 이상의 정보가 없으므로, 이후의 해석은 (나)에 달렸다.
여기서 우리는 k가 실수라는 사실을 알 수 있다.
그렇다
k가 이산적인 변량이 아니라 실수이므로, 아래의 사실을 인지할 수 있다.
이 문제를 풀고 못풀고는 온전히 위의 문장을 결론으로 끄집어 낼 수 있냐에 달렸다.
따라서 (나)의 부등식으로부터 다음과 같은 통찰을 이끌어 낼 수 있다.
(대부분의 실수 x라는 표현이 상당히 비수학적이지만 이해하기는 쉬울 것이다.)
그리고 여기서 더 강력한 사실을 끄집어 낼 수 있다. 그리고 이건 그 해 수능에 출제 되었다.
만약 다음의 두 집합이 서로소라 가정하자.
우리는 'n(AUB)=3'라는 사실로부터 위의 가정이 틀렸음을 알 수 있다.
(보충)
n(A)=x, A와 B의 교집합의 원소의 개수를 y라 하면 우리는 2x-y=3을 얻는다
x는 y 이상이므로, 이를 만족하는 (x, y)는 (2, 1), (3, 3)이다. 그런데 후자는 A=B라는 사실이므로 모순이다. 따라서 (x, y)는 (2, 1)이다.
이를 구현하면
을 얻는다. f(x), g(x) 모두 x가 충분히 크면 양수이므로,
이런 부등식을 얻는다. 그러면 자연스레
이런 결론을 얻으니 x=alpha, alpha+2에서 h(x)는 극소임을 알 수 있다. 또한
이 과정을 반복하면, h(x)는 0 이상임을 알 수 있다.
따라서 x가 절댓값이 큰 음수일 때에는 h(x)=f(x)로 지정되었다.
그리고 삼차방정식 f(x)=g(x)는 많아야 서로 다른 세 실근을 가지므로,
f, g 사이의 전환은 많아야 3번뿐이다.
그리고 의외로 이 과정까지 성공적으로 밟은 사람들은 꽤 많은 비율로
다음의 추정을 하게 된다.
이게 수리논술이면 위와 같은 비약은 큰 감점이 있게 된다.
하지만 생각해보면, 위의 설정을 준수하면서 모든 조건을 만족하면
시험장에서 우리가 할 검증은 다 끝난 셈이다.
만약 다른 세팅에서 조건을 만족한다면 어쩔거냐?
수리논술이면 이러한 고려가 필요하고
우리가 검토진이면 이런 이슈가 최우선 고려사항이지만
학생은 답을 마킹하는 사람이지 검토진이 아니다.
실전에서 이러한 태도를 견지하고
이후에 문제를 풀면서 왜 해당 경우 이외의 상황이 배제되는지를 분석한다.
흔히들 사회생활하면 사석과 공적인 자리에서 행동을 달리해야한다고들 하지 않는가? 호칭부터 해서
그와 마찬가지다.
본인의 TPO에 따라 문제를 어디까지 팔지를 끊어야 한다.
(보충 1: 함수간 전환 관련 참고 문항)
(보충 2: 나머지 경우의 배제)
만약 h(x)=0의 두 근이 0, 2가 아닌 경우에는 어찌 되는가?
이는 크게 둘로 나눌 수 있다.
근의 조합이 (-2, 0) (2, 4)와 같은 경우 혹은 아예 0, 2와 무관한 경우
후자는 쉽다. 만약 그렇다면 그 두 근은 모두 g(x)의 것이다.
그러면 해당구간에서 h(x)=g(x)인데, 이 경우 g(x)는 축과의 두 교점에서 모두 극소여야한다. 삼차함수니까 불가능하다.
전자의 경우도 마찬가지로, 극소를 설정할 수 없다.
따라서 h(x)=0의 두 근은 x=0, 2이다.
그러면 부호 판정에 의해 g(x)=0의 근의 범위가 아래와 같이 나온다
(이하 상동)
그리고 이런 빠른 전환이 어려운 사람(이하 퍼거)들은
최대한 이런 능력을 키워야한다.
최근의 수능은 정말
퍼거들에게 잔인할 정도로 이런 능력을 요구하니까 말이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중간 공부하다가 정줄놓고 지피티랑 ㅈㄴ 떠드는 중 쓸수록 느끼는건데 얘 생각보다 멍청한 듯
-
1인용으로 시켜먹을때
-
260 201까지 내려갔네 맞팔해줘
-
하 시간이 없네
-
학교 기하수업 듣고 교과서 문제 풀어보니까 체감상 미적보다도 어려운것 같은데 왜...
-
배달시켜 먹는것보단 싸겠지.. 라는 마인드 아 뭘 해먹어야하지 아이디어 다 떨어짐
-
대략적으로 쓰이는 테마들 ( DB형식이며 = 창고(?) ) 수천수만가지의 예시와...
-
서기 2038년 1월 19일 3시 14분 7초가 지나는 순간 유닉스 시간에 32비트...
-
나 내휴 끝나고 가는데 진도 어디까지 나갔냐
-
20시간까지는 못했긴 한데.. 머
-
나의꿈..
-
더프보정은 1
21211 되면 참 좋겟다....
-
총평:순공시간보다는 절대적인 공부의 양이, 양보다는 그 공부에서 내가 얼마나...
-
전여친 생각난다 1
보고싶진않은데 요새 근황이 궁금하네 부디 행복하게 지내고 있길
-
지금 종철T 개념 기출 끝내고 자분기중인데 도귕쌤 1단계 수업 안듣고 2단계부터...
-
정석민t 강의는 처음으론 어렵다는데요 어떤가요???
-
진격거 파이널 보고오니까 그런 생각이 드네
-
특이점이 안오면 사는게 별로 의미가 없는데
-
젭알
-
그날, 인류는 떠올렸다 20
이새기 오늘 생일이었구나
-
지금보다 더 어렵겠지? 그때는 확통으로 통일되어서 변별력가질려면 ㅈㄴ어렵게낼듯.. 공포군
-
오늘 아파서 학원 안 가서 셤지가.. 없는 이슈로 수학 평범한 사람 1인이지만...
-
모또모또 6
아와와오와와왑
-
화작기준
-
시마이 0
가까스로 12시간 채우긴 함
-
씹덕인 친구들 근처에 있을때 씹덕이야기를 꺼내지 않으면 입안에 가시가 돋나봄...
-
투표
-
한국사 특강? 같은거 들어야 함? 그거 여름에 해도 상관없나 참고로 본인 주먹도끼가...
-
지금 재종 다니는데 수업이나 담임쌤 다 좋거든요 근데 윗대가리가 일을 존나 못해서...
-
없다네요 갈게요
-
음..
-
엄마 반응: 한국사 8점이 뭐냐? 8등급 이번에 연휴 한국사 특강 들어라 국어는...
-
근데 진짜 오나홀 써본 형들만 와봐 진짜 살건데 추천좀 8
주말마다 사용하려고 재수하는데 ㅈㄴ힘듬
-
나지금텐션개높음 6
자야하는데 아
-
호들호들..
-
어떤가요 후기좀... 고시원은 다들 좁아보이던데 적응은 가능할까요 시설 웬만큼 안...
-
반수 4
나 반수하면 어디까지 ㄱㄴ일까?..
-
강의 안들을거면 별론가요?
-
이렇게 갑자기 등장하시면;; 경희대 시험기간
-
그래서 니들이 뭐할 수 있는데
-
서성한이나 연고 공대 ㄱㄴ할거같음?
-
잘생긴 애들이 더 부럽긴 하더라 잘생긴 친구 보니깐 삶이 편하더라 뭘 하든 옆에서...
-
표본차이가 큰거 같음 물론 과탐은 제외하고
-
본인 허수라 그런지 몰라도... 정시파이터의 본질은 남들 내신대비하느라 수능...
-
이 얘기 벌써 10번은 하는 거 같긴한데ㅋㅋㅋㅋ 개 와꾸 흐려지는 거 보고 웃참 존나했음
-
언 71 미 72 법 50 생I 39
-
수학도 진짜 열심히해서 많이 쌓아뒀는데 시골가느라 3일동안 못하니까 쌓아논거 다...
-
좋아하는 스타일 적어주면 좀더 미세하게 추천해줄 수 있음
-
미적 들으려하는데 시발점이랑 미친개념중에 난이도가 더 높은게 뭔가요? 동네학원에서...
이걸 15분만에 쓴다니
수업을 했으니 머리속에 그 내용 고대로 타이프하면 되는거라

저도 수업 내용을 써볼까 고민해봐야겠네요감사합니다

실수라는 조건을 통해 부등호는 성립할 수 없음을 알아내는게 중요했던 것 같습니다 굳
여기 이해못함... 설명좀 부탁해요이것도..
합집합 원소개수 구하는거 그런데 A=B일수 없죠 평행이동한거니
그리고 난 이제 문제를 만드는 사람이 되었다....크흑 존나 어려워
죄송한데 h(x)h(x+2) <=0 인 실수3개 조건에서
h(x)h(x+2)<0 인 실수가 없음이 어떻게 나오는지 알려주실분 계신가용 ㅜㅜ
h(x)h(x+2)<0인 실수가 있다고 가정해보면, 그런 실수 x근처에서 해당 조건을 만족하는 x값이 무수히 많이 존재하기 때문에
가정은 거짓임을 알 수 있습니다
오 캬 감사합니다♡