너는 문제를 푸는 사람이지 검토하는 사람이 아니다(25사관 22번)
게시글 주소: https://orbi.kr/00072793073
일단 조건 (나)를 보면 전년도 수능 22번에게서 영향을 받은 듯한 인상이 있다.
조건 (가)를 보면 h(x)는 f(x) 또는 g(x)이다. 이때 g(x)는 알려주지 않았다.
그러면 우리가 해야할 미션은 두가지임을 알 수 있다.
1. g(x)의 특정
2. h가 어느 지점에서 f이고 어느 지점에서 g인지 찾기
수학적 능력이 부족해 이 문제를 풀지 못하더라도
뭘 해야하는지 정도는 알아야 한다.
가지임을 알 수 있다.
(가)는 사실 'h(x)는 f(x) 또는 g(x)이다.' 이상의 정보가 없으므로, 이후의 해석은 (나)에 달렸다.
여기서 우리는 k가 실수라는 사실을 알 수 있다.
그렇다
k가 이산적인 변량이 아니라 실수이므로, 아래의 사실을 인지할 수 있다.
이 문제를 풀고 못풀고는 온전히 위의 문장을 결론으로 끄집어 낼 수 있냐에 달렸다.
따라서 (나)의 부등식으로부터 다음과 같은 통찰을 이끌어 낼 수 있다.
(대부분의 실수 x라는 표현이 상당히 비수학적이지만 이해하기는 쉬울 것이다.)
그리고 여기서 더 강력한 사실을 끄집어 낼 수 있다. 그리고 이건 그 해 수능에 출제 되었다.
만약 다음의 두 집합이 서로소라 가정하자.
우리는 'n(AUB)=3'라는 사실로부터 위의 가정이 틀렸음을 알 수 있다.
(보충)
n(A)=x, A와 B의 교집합의 원소의 개수를 y라 하면 우리는 2x-y=3을 얻는다
x는 y 이상이므로, 이를 만족하는 (x, y)는 (2, 1), (3, 3)이다. 그런데 후자는 A=B라는 사실이므로 모순이다. 따라서 (x, y)는 (2, 1)이다.
이를 구현하면
을 얻는다. f(x), g(x) 모두 x가 충분히 크면 양수이므로,
이런 부등식을 얻는다. 그러면 자연스레
이런 결론을 얻으니 x=alpha, alpha+2에서 h(x)는 극소임을 알 수 있다. 또한
이 과정을 반복하면, h(x)는 0 이상임을 알 수 있다.
따라서 x가 절댓값이 큰 음수일 때에는 h(x)=f(x)로 지정되었다.
그리고 삼차방정식 f(x)=g(x)는 많아야 서로 다른 세 실근을 가지므로,
f, g 사이의 전환은 많아야 3번뿐이다.
그리고 의외로 이 과정까지 성공적으로 밟은 사람들은 꽤 많은 비율로
다음의 추정을 하게 된다.
이게 수리논술이면 위와 같은 비약은 큰 감점이 있게 된다.
하지만 생각해보면, 위의 설정을 준수하면서 모든 조건을 만족하면
시험장에서 우리가 할 검증은 다 끝난 셈이다.
만약 다른 세팅에서 조건을 만족한다면 어쩔거냐?
수리논술이면 이러한 고려가 필요하고
우리가 검토진이면 이런 이슈가 최우선 고려사항이지만
학생은 답을 마킹하는 사람이지 검토진이 아니다.
실전에서 이러한 태도를 견지하고
이후에 문제를 풀면서 왜 해당 경우 이외의 상황이 배제되는지를 분석한다.
흔히들 사회생활하면 사석과 공적인 자리에서 행동을 달리해야한다고들 하지 않는가? 호칭부터 해서
그와 마찬가지다.
본인의 TPO에 따라 문제를 어디까지 팔지를 끊어야 한다.
(보충 1: 함수간 전환 관련 참고 문항)
(보충 2: 나머지 경우의 배제)
만약 h(x)=0의 두 근이 0, 2가 아닌 경우에는 어찌 되는가?
이는 크게 둘로 나눌 수 있다.
근의 조합이 (-2, 0) (2, 4)와 같은 경우 혹은 아예 0, 2와 무관한 경우
후자는 쉽다. 만약 그렇다면 그 두 근은 모두 g(x)의 것이다.
그러면 해당구간에서 h(x)=g(x)인데, 이 경우 g(x)는 축과의 두 교점에서 모두 극소여야한다. 삼차함수니까 불가능하다.
전자의 경우도 마찬가지로, 극소를 설정할 수 없다.
따라서 h(x)=0의 두 근은 x=0, 2이다.
그러면 부호 판정에 의해 g(x)=0의 근의 범위가 아래와 같이 나온다
(이하 상동)
그리고 이런 빠른 전환이 어려운 사람(이하 퍼거)들은
최대한 이런 능력을 키워야한다.
최근의 수능은 정말
퍼거들에게 잔인할 정도로 이런 능력을 요구하니까 말이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 8
-
국정원 문학 좋나요? 문학 독해틀을 만들어주는건가
-
설마 아무쓸모도 없진 않겠죠
-
특히 암기하는게 너무 어렵다 수능공부는 어케 했지 싶음,,
-
롱폼 보기 힘드네
-
오르비 2
굿나잇
-
슬슬 확통도 해야되는데 13
하기 존나 싫음; 진짜 개노잼임
-
선택자수 제일 많은 이유는 뭔가요? 얘기만 들어보면 제일 하면 안되는 과목이 생윤같은데
-
고2이고 학원에서 한번 돌렸는데 중딩때라 잘 기억이 안납니다 시발점을 들으려 하긴...
-
f'(0)+f'(3)=0 f'(x)≤0 on (-inf,3] ••• ㄱ...
-
내신에서 사탐은 선택 안해서 완전 쌩노배인데 진짜 뭐하지..? 정법 사문이 좀...
-
한15시간 하면될듯 내일 지금 치킨이 너무먹고싶음
-
나정도면 옯아싸 4
댓글없는 글이 복제가 된다고!!
-
2019년에 처음 듣고나서 부터 계속 듣는중 그래도 수능보단 덜 오래되었넹
-
~~
-
ㅈㄱㄴ
-
(롤만하며)
-
이러면 잘못을 나에게서 찾아야함? ㅋㅋㅋ
-
한국지리 4월 리뷰 2번. 주어진 자료의 인구 변화랑 사업체 / 종사자 변수가 다른...
-
맛잇음?
-
학교 전재산 n빵하는 조건이면 개같이 찬성누를듯
-
죽으란거지걍
-
저번에 ㅇㅈ했던 오픈카를 팔았는데 나랑 남자친구랑 둘다 고3때 면허따고 쭉...
-
재미삼아 나무위키로 대학들보는데 재단빵빵하고 의대있는대학들은 건물삐까번쩍한데...
-
강민철 안들어봐서 모르는데 그정도로 좋나 압도적임?
-
가격 때문에 고민이 되네요... 도움 많이 되면 살 생각임
-
개념이 적어서? 공부하기 편해서? 전부다 맞는말입니다. 사실 사탐을 하는이유는...
-
집가묜 시험 좃댠거가다름없어지긴하는데 그래도 괜찮죠
-
bxtre.kr/
-
썸넬이랑...
-
작수 : 생1 39(백분위 커하, 찍맞 +7)3덮 : 생1 43(찍맞 +11),...
-
자러감 3
ㅂㅂ
-
항상성 때문 아닐까 재수했던 애들 성적 안 오르는 확률 70프로래요 통계적으로 그게...
-
나빳다 1
ㅇㅅㅇ..
-
나보다 성적 좋은 양반들보다 목표 높은 거 같네 메타인지 좆박았나..
-
부끄러우니깐 캡쳐는 하지 말아줘
-
학벌주의쩌는 우리나라에서는 가겟다고하는사람 넘쳐나려나…
-
카나토미=독학서 4
반박시 님말이 맞음
-
공부중인데 ㅈㄴ재밋네 ㅆㅂ
-
걍 타과목 하는게 전략적으로 맞는듯한데...
-
앉았다 일어나기 100개 오리걸음 2km 투명의자 1시간 엎드려뻗쳐 3시간
-
난 진짜 진지하게 복권같은거 한번은 되지않을까라고 생각하는데
-
12번 일차식 적분 닮음쓰는거 뭔가 퀄 존나 좋아보인다.. 12 15 22틀
-
수특 문학 매3문 마닳 LEET 300제 드크북 수1 수2(중고) 4규 기하...
-
바지랑 결혼함
-
의대증원 1
취소됏다고? ㅆㅂ? 나 대학못가? 씨ㅣㅣㅣ발
-
학교 보니까 생지한 정시러 애들도 물리에서 죽을라 하더만 사탐공대만 문제가 아님
-
답지 유출<<<<그냥 시험 치고 다음날 배송하면 안됨??
-
시간 ㅈㄴ 많았는데 내신 만회할 기회인데 그렇다고 잘논것도 아닌데 고3때 같은...
-
bxtre.kr/
이걸 15분만에 쓴다니
수업을 했으니 머리속에 그 내용 고대로 타이프하면 되는거라

저도 수업 내용을 써볼까 고민해봐야겠네요감사합니다

실수라는 조건을 통해 부등호는 성립할 수 없음을 알아내는게 중요했던 것 같습니다 굳
여기 이해못함... 설명좀 부탁해요이것도..
합집합 원소개수 구하는거 그런데 A=B일수 없죠 평행이동한거니
그리고 난 이제 문제를 만드는 사람이 되었다....크흑 존나 어려워
죄송한데 h(x)h(x+2) <=0 인 실수3개 조건에서
h(x)h(x+2)<0 인 실수가 없음이 어떻게 나오는지 알려주실분 계신가용 ㅜㅜ
h(x)h(x+2)<0인 실수가 있다고 가정해보면, 그런 실수 x근처에서 해당 조건을 만족하는 x값이 무수히 많이 존재하기 때문에
가정은 거짓임을 알 수 있습니다
오 캬 감사합니다♡