회원에 의해 삭제된 글입니다.
게시글 주소: https://orbi.kr/00072792534
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
정병 이게 참 복잡하다고 느껴지네 저는 제 우울증 원인의 7할이 좋은 대학...
-
항상성 때문 아닐까 재수했던 애들 성적 안 오르는 확률 70프로래요 통계적으로 그게...
-
ㅈㄴ 떠거버지네 이거 하는 애들 대부분 잼민이라 말을 존나 안들음 컴롤 랭크는 하기...
-
나보다 성적 좋은 양반들보다 목표 높은 거 같네 메타인지 좆박았나..
-
부끄러우니깐 캡쳐는 하지 말아줘
-
평가 요소 까보지 않고서는 푸는 사람도 잘 모르는데 둘 다 세계화 / 평화와 공존의...
-
바지랑 결혼함
-
나 내휴 끝나고 가는데 진도 어디까지 나갔냐
-
과외를 문제 몇개 추려서 풀게 시키기 + 숙제 확인 + 모르는 문제 질답 + 진도...
-
총평:순공시간보다는 절대적인 공부의 양이, 양보다는 그 공부에서 내가 얼마나...
-
학교 보니까 생지한 정시러 애들도 물리에서 죽을라 하더만 사탐공대만 문제가 아님
-
내 안의 "그" 가....
-
뭐지 그 자연물 묘사하는 대목이었는데 에메랄드 어쩌구 하면서 되게 어려운...
-
모또모또 6
아와와오와와왑
-
화작기준
-
탈릅해버릴까 5
-
롱폼 보기 힘드네
-
나지금텐션개높음 6
자야하는데 아
-
나정도면 옯아싸 4
댓글없는 글이 복제가 된다고!!
-
세상망하는거 보면 뭔가 희열이 느껴지면서 흥분됨
개소리하지마세요 발산 ㅇㅈㄹ하고있네
제곱 발산이라는 용어를 처음 들어보는데요
1/x^2 이런식으로 발산인디 양쪽 다 양의 무한대로 발산하는거요
극한과 함숫값을 혼동하신 듯 해요!
g(x)가 x=3에서 함숫값을 갖지 않고 발산하는 경우, (나) 조건에 주어진 식에서 x=0을 넣었을 때 값이 정의가 되지 않기 때문에 'x>=-3인 모든 실수 x에 대하여'라는 표현을 쓸 수 없구요(즉 가정에 모순)
g(x)가 x=3에서 함숫값을 갖고 x=3에서 극한이 발산하는 경우라도, 주어진 식에서 x=3에서의 극한값은 0이 아닌 상수(분모 2승) 또는 발산(분모 2승보다 클 때)하고, 함숫값은 g(x)의 함숫값과 관계없이 0이 되는데, 사차함수의 도함수가 이런 개형을 가질 수 없으므로 모순입니다.
위에는 발산시 0보다 크다 이런 식이 나오면 안된다고 하신걸로 이해했는데 아래는 이해가 잘안됩니다...
혹시 g(x)가 0이되는 과정 다시 설명해주실 수 있나요.
아 불연속일때 4차함수가 안나온다는 말씀이세요?