수학 쉬운 질문
게시글 주소: https://orbi.kr/00072788315
1/x+1을 먼저 계산하고 싶은데
극한을 뜯어서 계산하려면 뜯은 후 각 부분의 수렴성이 확보되어야 하는데 위 경우 fg/x-1의 수렴성을 모르니까 엄밀하게는 먼저 계산하면 안되나요?
부정형과 그렇지 않은 극한 사이의 연산이 헷갈리네요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
풀어줄건가요? 좋아해줄건가요? 기하없나요? 문제퀄리티 해설은 이미 보장됨 수년간...
-
관성으로 하고있긴하나 의지가안남 시체끌고 어거지로 움직이는 느낌임 그리고 6교시해서...
-
무보정 1컷 41인데 머임. 정답률 50퍼 안되는게 6문제밖에 없음 생2 기하...
-
난 반팔에 긴바진데.. 모든 계절을 다 볼 수 있음뇨
-
2등급의 스펙트럼은 정말 넓은거 같음 동네 학원에서 내신 변형 문제만 슥슥 풀어도 나와서 그런가
-
김기현 파데 킥오프 커리 타고 3모 찍맞 없이 4컷 나온 개허수입니다... 킥오프...
-
기하런 2
작수 미적 15 21 22 28 29 30틀렸는데 지금이라도 기하런치는게 맞을까요?...
-
통후른지 탕후른지 13
산삼마냥 생긴 그 기괴 생명체는 왜 자꾸 뜨는거죠
-
자꾸 와서 핑프마냥 질문하는 친구 있는데 오늘은 또 방학에 확통 기하 병행하는 거...
-
작수 백분위 83에 이번 4덮 82점 맞았는데 rnp부터 할까요 아니면 바로 브크 들어갈까요??
-
이번 더프도 그렇고 작수도 그렇고 같은 답 연속해서 나오는거 너무 많은것 같은데...
-
알려주십쇼
-
저녁이구나
-
보통 짜잘한 거 까지 다 외워야 하나요?? 아님 큰 틀만 잡으면 됨??
-
지구과학쌤중에 수특 5번 풀라는데 진짜 그정도로 풀어야하나요?
-
반나절 처남았노 ㅅㅂㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
인물 정서 대립어 감정표현 신경쓰면서 읽으심? 아님 일단 눈으로 쭉 읽고 바로...
-
문학 지문을 읽으면서 필요한 부분에 표시를 해도 좋고 표시를 하지 않아도 좋아요....
-
머가 더 어렵나요 둘 다 잇는데 뭐 할지 고민중인데 더 어려운거에 투표해주세요
-
‘가족’ 두글자 놓치면 틀리는 ㅈ같음이 문제임
-
아직 쉬운 도표 중이라 어려운걸 전혀 모르는데 뒷부분은 좀 어려운거 나오나요?...
-
바로 스텝1로 넘어가는게 좋을까요?
-
⢀⢀⢀⠒⠛⠟⠓⠄⢀⢀⢀⢀⢀⢀⢀⢀⠿⠟⠛⠛⠛⠻⠿⢿⣿⢀⢀⠄⢀⠒⠒⠂⢀⠄⢀⢀⢀⢀⢀⢀⡠⢀⢀⠉⢀⠉⠐...
-
코르코딜로가 다 이기는데 말이지
-
어떰? 4
ㅎㅎ
-
심멘오직심멘 11
심멘오직심멘 본인 고전소설 같은 거 못 햇음 그래서 마법천자문처럼 읽기 빡센글은...
-
더프 보정 컷이 마냥 후한게 아니엇음요 그 예를들어 미적 보정 1컷이 72이면 그건...
-
같이 밥먹을사람 없어서 15
매점에서 때우는사람이 있대요.. 어 형이야
-
이번덮도 1번찍고 틀림 아니 다시생각해보니까 황제 배만든거 잘했다매 ㅅ발라마
-
서성한 자연계 쓸 생각이고 사문 동사로 수능 볼 생각입니다. 생윤보다 동사의 불리한...
-
연계 대비 안 햇다고 가정햇을 때 아예 ebs 안 봣다고 햇을 때
-
겨울 노베에서 올오카 듣고 지금 tim까지 하고 있는 현역입니당. 3모 78점 박고...
-
보정 후하다매요ㅠㅠ 1좀해보자
-
4덮 화작 66 1
보정/무보정 몇등급 예상하시나요
-
안경 맞췄는데 0
개잘보임
-
야이 기요마 7
이 기요마
-
운동끝 4
밥먹어야지
-
오랜만에 아이스크림을 먹는거임
-
오르비보느라 몰랏네..ㅋㅋㅋㅋㅋ ㅋㅋ
-
5000짜리 캬캬
-
난 현우진이 삼각함수최대최소를합성으로 풀어줘서 그것만 아는데 아예 합성을 알아야함?
-
역시 사람 안 바뀌는군
-
하위권 학생들 과외를 진행하며 느낀 가장 큰 문제점은 노베들이 글을 읽고 이해를...
-
재수때 생각했던건데, 아침부터 공부하기 싫을 때는 그냥 본인이 가장 좋아하고 그나마...
-
오래간만에 시골에서 열심히 공부하는 N수학생들 대부분이 1,2등급이 되었네요....
-
엄기은쌤 피크 도착했는데에에에ㅔ
-
20%도 안될듯
-
못하는건 아닌데 풀면서도 느는 느낌이 안들어요.. 뭐가 문젤까요 n제를 풀어야되나
-
나는 1컷 44 2컷 41 같은데 더 높으려나??
계산해도 돼요
왜요?? 부정형과 그렇지 않은 극한 계산은 따로 배운 적 없는 것 같아서요.
부정형인 부분(사칙)수렴하는 부분일 때
뜯어서 계산할 수 있는 이유가 뭐에요?
애당초 f 조건을 보면 1 대입했을 때 f(1)=0이니까 분모의 (x-1)은 약분되지 않을까요
그냥 f(x)를 g(x)에 대한 식으로 바꿔도 되지 않을까요
값을 물어봤으니까 구하고자 하는 극한도 수렴한다는것이 확보되어서 쪼개도됨요 물론 논리적으로는 문제가 있다고 생각할 수도 있지만 수능수학에서는 중요한 발상임요
아니면 인수 개수 따져서 각각이 수렴하는거 확보하고 쪼개도 상관없음요
아 0/0꼴을 먼저 처리해서 수렴하는 꼴로 만들면 극한의 성질을 비약없이 사용할 수 있겠네요. 고맙습니다