누가 허수일까? [첫풀이 1000덕]
게시글 주소: https://orbi.kr/00072734738
흠..
참고) 여기서 '거짓말'이란 말하는 사람이 믿는 바에 부합하지 않는 말이 아니라 사실이 아닌 말을 가리킵니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인설의 목표인데 지구랑 너무 안 맞고 점수 잘 나와본 적 없음 외우는 거에...
-
다 덮인 앞머리 있는 상태로 나가는 걸 존ㄴㄴ나 싫어함
-
레전드 ㅋㅋ, 2명은 부모님이심
-
관심없으면 아예 사실 지금 반 애들 이름도 모름 아직
-
물갈이 빠르네
-
미용실가서 생애처음 펌도 해봤고 무신사에서 옷도 사봤고 다이어트도 많이 해봤고 그냥...
-
행복하지마요 2
행복하려면 사랑한 날 잊어야 하잖아 가시가 박힌듯 숨쉴때마다 눈물이 흘러와 사는게 사는것이 아니죠
-
친구 만들까
-
눈물이 2
주르르
-
사1 과1 하시는 분들이 많이 보이시는데 사1 과1의 장점이 뭐라고 생각하시나요?...
-
잠은 짜피 못 잔다리
-
ㄹㅇ 성형 어쩌고 하는것도 막 엄청 잘생겨지고 싶어서 그런게 아니라 최대한...
-
뛸 준비하기
-
오마이갓 5
불끄고 폰하니까 눈에 피로감이 으읔
-
나답군
-
행복한 상상 하자
-
잘거야 4
7시에 기상해야해 짜증도 자고일어나면 풀리겠지?...
-
달리살기. 1
누울 때 일어나고 일어날 때 걷고 걸을 때 뛰고 뛸 때 날기
-
센츄 다신분들 0
저도 이번 3덮 국수 표점으로 신청하고 싶은데 계열기준에선 1% 넘어기고...
-
3옥레 성공. 5
하나레 바나레에테모 토키메에쿠모노오
-
ㅈㄱㄴ
-
내 스크랩은 6
90%는 컨텐츠 리뷰 글나머지는 탐구 칼럼
-
사실 새디스트임 2
ㄷㄷ
-
내 성적 취향. 7
...
-
저는 성적 취향 모름요 24
생각해본적 없어요 아물론 저번학기 성적 주면 절하고 받슴니다
-
24수능 언미영생지 백분위로 98 99 1 98 95였음 24 수능 이후로 국어랑...
-
스카 다니면서 독재했는데 공부 시간은 어느 정도 나오면서도 너무 생활패턴이...
-
우는거랑 치마 조아함
-
뭐가더낳냐
-
욕심 ㄴㄴ
-
맘에 안 드는 부분이 하나 잇음
-
머리가 안 되겟다
-
아무도 없는데에
-
조까튼 월요일 5
축구도 비겨서 짜증나
-
아 아니다, 지금이 낫다
-
ㄹㅇ 부럽네, 고2인데 이상한거 관심 안 들이고, 수능에 관심 잇어서 온거자늠 난...
-
좀 니글거리네 2
빵이 남았어... 야식의 부작용인가
-
히 이이 히 이이 이이 히 이이
-
그건 있다 학문적 적성을 판별하는데는 꽤 유용함 개념을 빠르게 받아들이고 적응이 잘...
-
쇼타 투척 0
음 역시 귀엽군요
-
어차피 내일 학교 안가는데
-
뭔잠이여 ㅋㅋ 10
내가 와따 잠 안옴 낼그냥 커피마시고 저녁까지 버틴다
-
여러분 잘 자요 4
난 안 잡니다 당연히
-
어지러워요
-
담에봐 내일올려나 오겠지 내일봐
-
올해 설수만 가면 자살은 안할듯
-
새벽팟 어디갓는데 당황스럽네 공부하다 왓더니 아무도 없음 설마사카
-
맛있게 와구와구 먹는중
정답: 1
풀이)
1. 을과 정이 동시에 참이면, 정의 진술에서 f(0)=0이고 f'(0)=f'(4), 을의 진술에서 f'(2)=0이므로 f(x)=(x–2)³+8
이때 f'(1)>0이고, f(x)는 두 실근을 가질 수 없으므로 갑과 병이 모두 거짓
따라서 을과 정 중 하나는 거짓이고, 갑, 병, 무는 참
2. 무의 진술에서 F'(x)=f(x)라고 하면 F(x)가 x>0에서 증가함수이므로 x>0에서 f'(x)>=0
3. 을이 참이고 정이 거짓이면, 을의 진술에서 f(0)<0일 수 없으므로 f'(2)=0이고 갑의 진술에서 f'(1)=0
무의 진술과 병의 진술을 함께 고려하면, f(x)의 극솟값이 0이어야 하므로 f(x)=(x+1/2)(x–2)²인데, 이는 무의 진술과 모순
따라서 을이 거짓이고 정이 참
4. 갑, 정의 진술에 의해,
f'(1)=0, f(0)=0, f'(1)=f'(4)이므로 f(x)=x(x–3)²
이는 갑, ~을, 병, 정, 무를 모두 만족함
따라서 f(5)=20
헉 ㄷㄷ 정답
감사합니다
22예시13번인가
정답!