고점매수 JOAT가 말도하노
게시글 주소: https://orbi.kr/00072716753
나는 25한정 1500명 버닝이벤트로 저점매수후 사다리 걷어차기 성공했고 너같은애들이 누워줄동안 수업 듣고 있음 ㅎㅎ 니는 고점매수에 물리고 지금 복귀각 안나오기도 하고 친구도 없어서 오르비 상주 하는거 아님?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문법황 2
그러하다
-
팩트는 옯찐따는 비호감 척도 조사도 못한단 거임,, 4
ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
아아아배고퍄 2
배고픈데 졸려 이 거지같은 입시생활에 두번씩이나 버려지다니
-
둘이 차이없음? 시발점 들었는데 뉴런 들을까 고민되누
-
8명 차단한다 2
ㅅㄱ
-
똑같은 똥 싸는거자나 ㅠㅠ
-
변호사 지망이여서 과는 정말 아무과나 어문쪽도 상관없고 고려대 입학 정말...
-
흑흑 나 이제 똥글도 못써 어떡해
-
hi orbi 3
wrong tyme know sea
-
주간지 이런거 신경쓰지말고 하루 3~4지문씩 기출만 보는게 낫겠죠?
-
아ㅣ 씨발 2
다리 쥐났어
-
모의고사가 내신보다 0.5등급 이상 잘나오면 정시 모의고사가 내신보다 안나오거나 별...
-
? 2
너무해
-
잇올 신청했는데 ㅇㅁ 없는 사이트때문에 신청이 안 됐는데 교육청 가서 또 이것저것...
-
라면 vs 짬뽕 13
더는 미룰수없다
-
접수일얘기가 아무곳에도 안올라왔길래여
-
호감누르는건 부끄러워
-
다음주부터 빡공할거야!
-
인간실격 에휴
이런애들이 감귤하는구나
마시께따
나는 참의사니까 수없듣지 ㅇㅇ
참의사 ㅅㅂㅌㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
이건 웃겼네
노무현
님?
박원순
글 한편한편이 아름답노 진짜로
그래 내가 미안하다 잘못건들였다 미안해 제발용서해다오 ㅠㅠ
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.
Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact.
The notion of paracompact space is also studied in pointless topology, where it is more well-behaved. For example, the product of any number of paracompact locales is a paracompact locale, but the product of two paracompact spaces may not be paracompact. Compare this to Tychonoff's theorem, which states that the product of any collection of compact topological spaces is compact. However, the product of a paracompact space and a compact space is always paracompact.
Every metric space is paracompact. A topological space is metrizable if and only if it is a paracompact and locally metrizable Hausdorff space.
ㅋㅋㄱㅋㄱㅋㄱㄱㅋㄱㅅㅂㅋㅋㅋㅅㄱㅋㄱㅋㄱㅋㅋㅋㅋㅋㅋㅋ 너무 좋은 댓글
한편으론 똑똑하네 이걸 트리플링빔을 안맞고 진짜 수업을 들어?
센츄에피도 못단년이 까부네?ㅋㅋㅋ
수능 99999전라도 지둔수시로 와서 못다는데 ㅠㅠ
그런나도 의댄데 넌 왜 노뱃이니 ㅠㅠ
현역이니까 못달지 지둔아
좀만 기달려봐ㅋㅋ
설뱃 약뱃 달고 올게
그래도 센츄는 있다