[자작문제] 약간은 발상적인 수2킬러
게시글 주소: https://orbi.kr/00072695811
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다
팔로우해주시면 뻘글 없이 맛있는 문항들을 만나보실 수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
명분이 이렇게 좋은데 롤빽 절대 못시킨다 20 21 23수능급 킬러정도는 나올수 있게 풀릴지도
-
점수가 늘음 실력이 늘었는지는 모르겠는데 실제로 찍히는 점수는 많이 늘었음요 별로인...
-
자세히 설명해주실 분
-
시민1:헌재 불질러버려 #~# 시민2:이게 말이 되냐고오오오!!!! 전광훈:아니...
-
마치 이반데소비치의 하루를 읽는거 같은 텁텁함과 오만과 편견에서 할매가 남준걸...
-
5000명 증원.. ‘만인은 평등해야...’ 발언
-
난대통령이될거야 2
미래의과학자발명왕
-
수능보기까지 1년동안 보통 수학엔제 몇권정도 푸시는거같나요??? 3
몇권정도 푸시는거같나요???
-
외로우면 혼자 술을 드셈 만화책 읽으면서
-
극우가 할 수 있는게 그것 밖에 없는게 절망스러울 따름
-
그거 그냥 주말에 학교 가도 됨? 반수생이라 평일에 학교 갈 시간이 안 날 것 같은데ㅜ
-
얌전히 부모 좆같아도 공부하렴 내가 할말이 없다
-
아님 계속 휴학?
-
좀 더 큰거 없나
-
기회를 이렇게 많이 줬는데도 이꼴이면 걍 문제가 맞음
-
치열했다..
-
이 노래 4
질리기전에 어서 신곡을 내도록.
-
서브웨이 가야지 하는데 오후에 수학 달리고나면 지쳐서 탄수화물말고는 눈에 뵈는게...
-
어그로 끌어서 ㅈㅅ 독서실에 계속 패딩 스치는소리? 30초마다 샥샥거리는 사람있는데...
감소함수
x=-2 교, x=1 접
도함수 판별식 <= 0 으로 최고차항 범위 확정
정답내기
너무잘해..
41?
41
f(x)가 증가함수이면 f(f(x))는 증가함수고 f(-x)는 감소함수가 되어 집합 조건에 모순
그러므로 f(x)는 감소함수다.
그러므로 {x|f(x)>=-x} = {x|x<=-2 or x=1} 이 되어
f(x)+x=-a(x+2)(x-1)^2 (a>0) 으로 놓을 수 있다.
x를 우변으로 넘기고 양변을 미분하면
f'(x)=-3a(x-1)(x+1)-1
도함수의 부호변화가 없어야 하므로 x=0에서의 최댓값이 0 이하여야 한다.
따라서 3a-1<=0 a<=1/3
f(-5)=108a+5
그러므로 최댓값은 108/3 + 5 = 41