[자작문제] 약간은 발상적인 수2킬러
게시글 주소: https://orbi.kr/00072695811
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다
팔로우해주시면 뻘글 없이 맛있는 문항들을 만나보실 수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 참 궁금함 2
8시에 자면 대애충 푹 자서 덜 피곤할 때 깨버리면 되는데 왜 좆도 피곤하게...
-
백호T 인강 듣고 생명과학 공부중인데 흥분전도 추론형 문제가 너무 안풀려요ㅜㅜㅜ...
-
몸은 으슬으슬하고 이마는 뜨거움. 기침. 콧물나고... 아 공부 어케 하냐....
-
1.국 강사주간지 풀이(독서만) 국어 엑셀 1일치 본바탕 언매 1세트(10/11),...
-
둘이 다른건가
-
(1000덕 받아가세요) InDePTh 영어 독해 개념서 사전 구매 Event 2
2026 InDePTh 영어 독해 개념서를 4/8 전에 구매하신 분들께 다음과 같은...
-
저녁추천좀
-
후진국이라 못 산다고 거지 나라라서 욕하는 게 아니라 알고 봣더니 부패지수 최하위에...
-
사람 보는 눈이 날카롭다 근데 그 눈은 거울을 보면 자기도 투과해버려서 때론 아픈...
-
설명충:해당 짤은 호이4 인게임 디버프임 저걸 안떼면 전쟁에 돌입했을때 파리만 따이면 항복함
-
ㅋㅋ
-
공부의 첫 단계는 부족한 부분을 찾아내는 것이라고 생각하는데, 국어에선 부족한...
-
국어 33번 ㅇㅁ 없음?
-
:) 2
:)
-
12시간남았다 2
ㅋㅋ 수고
-
으흐흐흐 맛있겠지 저거 7900원이야
감소함수
x=-2 교, x=1 접
도함수 판별식 <= 0 으로 최고차항 범위 확정
정답내기
너무잘해..
41?
41
f(x)가 증가함수이면 f(f(x))는 증가함수고 f(-x)는 감소함수가 되어 집합 조건에 모순
그러므로 f(x)는 감소함수다.
그러므로 {x|f(x)>=-x} = {x|x<=-2 or x=1} 이 되어
f(x)+x=-a(x+2)(x-1)^2 (a>0) 으로 놓을 수 있다.
x를 우변으로 넘기고 양변을 미분하면
f'(x)=-3a(x-1)(x+1)-1
도함수의 부호변화가 없어야 하므로 x=0에서의 최댓값이 0 이하여야 한다.
따라서 3a-1<=0 a<=1/3
f(-5)=108a+5
그러므로 최댓값은 108/3 + 5 = 41
감사합니다!

문제가 참좋네요