[자작문제] 약간은 발상적인 수2킬러
게시글 주소: https://orbi.kr/00072695811
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다
팔로우해주시면 뻘글 없이 맛있는 문항들을 만나보실 수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1회는 35분정도 나왔는데 한 40분 잡고 풀어야되나
-
저도 투표하고 싶은데 아가라 못할수도 있겠네요...
-
필의패하고 증원은 어쩔려나
-
???:수능의 정상화 실패
-
사문 사설 추천 2
사문 사설 모고 추천해주세요 강k 사만다 좋다는데 의견이 너무 다양해서 뭘 먼저...
-
안녕하세요 독학재수하고 있는 재수생입니다 ㅠㅠ 사탐런 세지사문 사탐공대 가고싶은데...
-
설공 설의 버닝 이벤트 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
버리고 92맞음
-
일단 지금은 이재명 파이팅 하면 되는거임?
-
첫 투표를 대선으로...우와
-
정시확대 시켜주신분 의대정책 안하셨던분 킬러배제 안하셨던 분... 그저 goat 뒤늦게 깨달았습니다
-
김범준 선생님 왜 확통은 없고 미적만 있어요? 혹시 확통 없어서 범바오?라고...
-
의대 해결방법 2
그냥 복귀하든 말든 수능 못치게 막고 다 쫓아내면 안되나..
-
다음대통령 3
재매이햄 맞나여?
-
삼도극하고 무등비 버렸었는데 해놔야할까요?
-
진짜 정치력인지 정치질인지 아무튼 이 분야는 씹goat이라고 생각함... 우스갯소리가 아닌 ㄹㅇ로
-
참고) 3
오늘 새벽에 올린 탄핵 반대글의 좋아요수는 145개로 탄핵 찬성글의 좋아요수인...
-
서울대 의과대학 공공의대 전환을 강력히 지지합니다
감소함수
x=-2 교, x=1 접
도함수 판별식 <= 0 으로 최고차항 범위 확정
정답내기
너무잘해..
41?
41
f(x)가 증가함수이면 f(f(x))는 증가함수고 f(-x)는 감소함수가 되어 집합 조건에 모순
그러므로 f(x)는 감소함수다.
그러므로 {x|f(x)>=-x} = {x|x<=-2 or x=1} 이 되어
f(x)+x=-a(x+2)(x-1)^2 (a>0) 으로 놓을 수 있다.
x를 우변으로 넘기고 양변을 미분하면
f'(x)=-3a(x-1)(x+1)-1
도함수의 부호변화가 없어야 하므로 x=0에서의 최댓값이 0 이하여야 한다.
따라서 3a-1<=0 a<=1/3
f(-5)=108a+5
그러므로 최댓값은 108/3 + 5 = 41