[자작문제] 약간은 발상적인 수2킬러
게시글 주소: https://orbi.kr/00072695811
평가원 시험지 기준으로 보면 킬러급인 수2자작입니다
팔로우해주시면 뻘글 없이 맛있는 문항들을 만나보실 수 있습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4규 시즌 1 수2 고작 한 권 푸는데 12시간이나 걸림요. 한문제당 약...
-
돈달라고? 으이구
-
기대할게요♡
-
고2 정시파이터입니다 수업시간에 수학을 풀어도 개인시간에서 하는것 보다는 속도도...
-
맞팔구함!! 6
파릇파릇한 뉴비랑 맞팔할사람??
-
나도 덕코줘 4
잉잉
-
이미지 써주는거 6
챗지피티한테 맡겨도 써줌? 나 이런거 할줄 모름
-
궁금
-
으하하하하 5
으하하하하하하하
-
내프사 귀엽지?? 10
-
1. 국회, 그니까 입법부 권한을 대놓고 정면으로 부정중이죠? 2. 가짜뉴스...
-
칭찬 좀 해주셈 9
ㄱㄱㄱㄱㄱㄱㄱ
-
문제가너무얌전해 7
지킬선은다지키면서톡톡튀는문제를만들고싶다
-
으대<< 여기는 4
보통 성비는 어케됨? 그리고 예쁜 애들 많음? 애들 텐션이나 그런건 어떰? 다 공부...
-
이번에 김기현 T 수 1,2 킥오프까지 보고 3모를 봤는데 낮은4? 조금만 더...
-
이건 못참지
감소함수
x=-2 교, x=1 접
도함수 판별식 <= 0 으로 최고차항 범위 확정
정답내기
너무잘해..
41?
41
f(x)가 증가함수이면 f(f(x))는 증가함수고 f(-x)는 감소함수가 되어 집합 조건에 모순
그러므로 f(x)는 감소함수다.
그러므로 {x|f(x)>=-x} = {x|x<=-2 or x=1} 이 되어
f(x)+x=-a(x+2)(x-1)^2 (a>0) 으로 놓을 수 있다.
x를 우변으로 넘기고 양변을 미분하면
f'(x)=-3a(x-1)(x+1)-1
도함수의 부호변화가 없어야 하므로 x=0에서의 최댓값이 0 이하여야 한다.
따라서 3a-1<=0 a<=1/3
f(-5)=108a+5
그러므로 최댓값은 108/3 + 5 = 41
감사합니다!

문제가 참좋네요