Tip) 유동적인 식 세팅
게시글 주소: https://orbi.kr/00072689672
사실 잘하는 사람들은 다 자연스러울 듯요
유동적으로 다항식을 세팅하자
예제)
f는 삼차함수, 단조증가, 최고차항의 계수 양수
f(0)=0, f'(0)=1, f(1)=1.
f(2)의 최댓값은
(대충 먼저 풀어보기)
1. 차함수
문제 풀이 자체가 차함수를 통해 진행되었을 때 저 조건이 나온다면, 자연스럽게
f(x)=px(x-1)(x-k)+x로 놓을 가능성이 높다.
근데 이러면 그 이후 계산이 귀이찮다.
단조증가 해석을 할 때 미분을 해야될텐데 곱미분 귀찮아죽겟는데다가, f'(0) 조건도 식에 표현이 안 되잇다.
2. 전개식
(1)을 보면 미분을 편하게 하기위해 전개식을 써주면 좋겟다는 생각이 든다
=> f(x)=px^3+qx^2+x, with p+q=0. (단조증가빼고 모든 조건 해석 완)
미분 때리면 3px^2-2px+1 (∵p=-q)
=> D/4 = p^2-3p≤0 => 0≤p≤3.
구하는 값은 f(2)(=4p+2)이므로, 최댓값은 14이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하나둘씩 풀리니깐 기쁘다... 예전엔 손도 못 댔을텐데 오늘 210630 40분...
-
정상모t 2
수학 2등급 목표로 하고있습니다. 쉬운 4점까지는 다 맞아요.. 정상모 선생님...
-
고려대 멘토링 팀 Hitch-up이 3모 이후 멘토링 해드립니다! 0
안녕하세요, 저희는 전원 고려대학교 재학생으로 구성된 교육봉사 소모임 Hitch-...
-
저능아 ㅇㅈ 8
.
-
애미터진 전문대 1 2번 병신들 ㅋㅋㅋ 노가다나 뛰러 가라
-
환율 정상화 0
하루만에 한달치 밥값 벌어버리기
-
캬캬
-
일의 순서와 목적을 구분 못하는 거랑 같은 듯. .. 브레인크래커 1강만 봐도...
-
10월 말 컴백해서 4월 중순까지 팬싸하는 회사가 레전드이긴 한데, 그런 팬싸를 가...
-
아님말고
-
합이 2분의 파이임을 증명하시요
-
나좋다는 이성이 너무 많은데 얼굴만보고 오는것같아 현타온다 짧은 만남 여러번만나다보니 너무 공허함
-
일본 엠제트들 영상보고 왜 고쳐지는지 모른다는데 여기 젊은이들도 모름?
-
우웅 알겟어
-
다른건지도 모르고 화학하고 잇엇다
님 수학 강사 누구 들으심?
근데 이건 0에서 기울기 1이라 k=0이 나옴요
ㅋㅋ 예제선정 저능아 레전드
이거 중요 옛날에 이렇게 돌아간 문제 한두개가아님
수학 고트...
근데저거
0에서 접선 y=x
0 1 y=x위라
직선설정하는게낫지안나
위에 꼬얌님이 똑같이 말하심

그르네
급조한 문제라그 251113도
함 비교해봐가면서 봐보셈