Tip) 유동적인 식 세팅
게시글 주소: https://orbi.kr/00072689672
사실 잘하는 사람들은 다 자연스러울 듯요
유동적으로 다항식을 세팅하자
예제)
f는 삼차함수, 단조증가, 최고차항의 계수 양수
f(0)=0, f'(0)=1, f(1)=1.
f(2)의 최댓값은
(대충 먼저 풀어보기)
1. 차함수
문제 풀이 자체가 차함수를 통해 진행되었을 때 저 조건이 나온다면, 자연스럽게
f(x)=px(x-1)(x-k)+x로 놓을 가능성이 높다.
근데 이러면 그 이후 계산이 귀이찮다.
단조증가 해석을 할 때 미분을 해야될텐데 곱미분 귀찮아죽겟는데다가, f'(0) 조건도 식에 표현이 안 되잇다.
2. 전개식
(1)을 보면 미분을 편하게 하기위해 전개식을 써주면 좋겟다는 생각이 든다
=> f(x)=px^3+qx^2+x, with p+q=0. (단조증가빼고 모든 조건 해석 완)
미분 때리면 3px^2-2px+1 (∵p=-q)
=> D/4 = p^2-3p≤0 => 0≤p≤3.
구하는 값은 f(2)(=4p+2)이므로, 최댓값은 14이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는 학년도 기준 국어 17 수학 19~21 평가원만+21년 교육청 탐구 21 더...
-
곧 올릴테니 많관부
-
적당히 잘해라 잇올시발롬들아
-
이제 안하면 진짜 큰일날거같아
-
여캐일러 투척 11
-
21세기 정상국가에서 친위쿠데타 일으킨 병신은 리짜이밍 인민장군에게 직권을 양위하고 물러가십시오
-
다들 공부하느라 고생했어요 이제 저랑 놀아줘...
-
수능 끝나고 나한테 고마울거다 얘들아
-
나랑 아무도 안 놀아줘 10
완전히옯찐따야
-
찍었다고 판단하는건 다 틀리게 처리하는거임 이것이 공정한 성적 배분의 원칙
-
알림온다고 화냉 힝 ㅠㅠㅠ
-
궁금
-
탄핵 될?말? 5
될?
-
쒸발 4
10문지 푸는데 2문제는 모르겠노;
-
전 반대
-
제발 나를 납득시켜주셈뇨
-
2017년에 슬로베니아 남성 2명이 집단으로 한 여성을 성추행한 혐의로 징역 1년이...
-
자욱아 ㅆㅂ
-
쓰면서 이표정 나옴 너무 힘들어요 하지만 사랑하는 오르비언들을 위해
-
이미지 글이랑 비교하니까 너무 참혹하다
님 수학 강사 누구 들으심?
근데 이건 0에서 기울기 1이라 k=0이 나옴요
ㅋㅋ 예제선정 저능아 레전드
이거 중요 옛날에 이렇게 돌아간 문제 한두개가아님
수학 고트...
근데저거
0에서 접선 y=x
0 1 y=x위라
직선설정하는게낫지안나
위에 꼬얌님이 똑같이 말하심

그르네
급조한 문제라그 251113도
함 비교해봐가면서 봐보셈