Tip) 유동적인 식 세팅
게시글 주소: https://orbi.kr/00072689672
사실 잘하는 사람들은 다 자연스러울 듯요
유동적으로 다항식을 세팅하자
예제)
f는 삼차함수, 단조증가, 최고차항의 계수 양수
f(0)=0, f'(0)=1, f(1)=1.
f(2)의 최댓값은
(대충 먼저 풀어보기)
1. 차함수
문제 풀이 자체가 차함수를 통해 진행되었을 때 저 조건이 나온다면, 자연스럽게
f(x)=px(x-1)(x-k)+x로 놓을 가능성이 높다.
근데 이러면 그 이후 계산이 귀이찮다.
단조증가 해석을 할 때 미분을 해야될텐데 곱미분 귀찮아죽겟는데다가, f'(0) 조건도 식에 표현이 안 되잇다.
2. 전개식
(1)을 보면 미분을 편하게 하기위해 전개식을 써주면 좋겟다는 생각이 든다
=> f(x)=px^3+qx^2+x, with p+q=0. (단조증가빼고 모든 조건 해석 완)
미분 때리면 3px^2-2px+1 (∵p=-q)
=> D/4 = p^2-3p≤0 => 0≤p≤3.
구하는 값은 f(2)(=4p+2)이므로, 최댓값은 14이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐가 다른거임? 쎈 대수 미적1 사도 됨?
-
벚꽃보러갈래? 2
네네네네네네네네
-
ㅎ
-
틀딱입니다. 수능수학을 준비한다느 가정하에, 개념원리 등을 한번 돌리고 이후 볼 수...
-
빅포텐 시즌1 수1 수2 끝냇는데 다음 엔제 뭐가좋을까요?
-
출근도장 5
쾅쾅쾅 일하다가 늦게찍음뇨 좋은 하루 되세요
-
오르비에서 딴글은 안쓰고 맨날 정치뉴스 꾸역꾸역 가져오면서 그와중에 자기딴엔...
-
윤리랑 지리는 하다가 때려치고 과탐할거같아서 동사정법경제중에 골라주세요 나머지 한개는 사문임
-
야 이 바보들아 4
-
후기보니까 한달에 10키로 빠졌다는 분도 계시던데
-
N제 해설강의는 1
다 보나요? 틀린것만 보나요?
-
제가 아침에 일찍 일어나서 공부해도 걍 잠이 솔솔 오길래 요즘은 8시에 기상해서...
-
흑
-
긴 발목 양말을 신었는데도 벌거벗고 나온 기분이에요...
-
작수 영어 (찍어서)6떠가지고 메가패스 끊고 조정식 듣고있는데 이해가 잘 안되는...
-
햇살 ㅈㄴ좋다 1
아침엔 좀 추운것 같다만 밥먹고 담배피면서 광합성 하니까 힐링이 따로없네
-
이시기에 플만한 실모 있음? 그냥 기출 복습하는게 맞나
-
지하철 억까 1
왜 지하철은 배차간격이 10분이고 왜 내 앞에서 철벽을 치는거지..
-
종강안하나 0
할때됐는데
님 수학 강사 누구 들으심?
근데 이건 0에서 기울기 1이라 k=0이 나옴요
ㅋㅋ 예제선정 저능아 레전드
이거 중요 옛날에 이렇게 돌아간 문제 한두개가아님
수학 고트...
근데저거
0에서 접선 y=x
0 1 y=x위라
직선설정하는게낫지안나
위에 꼬얌님이 똑같이 말하심

그르네
급조한 문제라그 251113도
함 비교해봐가면서 봐보셈