미적분 풀이 어디가 틀렸는지 모르겠어요
게시글 주소: https://orbi.kr/00072684636
답지가 이해는 되는데 제 풀이가 왜 틀린지 모르겠음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
부조리본거 3
선임이랑후임이랑보일러실감
-
얼버잠 2
자라 옯창들아
-
38선 지키셈
-
약기운 떨어지니 텐셩이 낮아졌어
-
개아픔
-
나 잠 3
ㅂㅂ
-
200일이면 2
전과목 노베이스 해결하기에 충분하네
-
나 돈좀 줘
-
아님
-
219일이라.. 7
한참 남았네
-
이성애자임
-
아님
-
한 번만 재보자
-
어떡해!!
-
다들 대단하십니다..
-
나 사실 키큼 2
3cm임
-
ㄹㅇ 수석임 나는
-
남자임
-
내일부터는 일상으로 복귀하고 학점도 챙겨야겠지요.. 군대도 가야하네 곧
-
아시는 분
-
나는 이상형 2
완벽한 사람
-
이상형 말해드림 2
이상형
-
에휴
-
뭐 우째 걍 놔둬
-
걍 퉤학시켜주셈 0
제발
-
ㅇㅇ
-
조금 심한말 해버림..
-
여자친구나 남자친구가 제 본모습을 보고 실망할까봐 겁나요
-
요즘 불면증.. 감기 걸려서 약도 먹었는디 잠이 하나도 안오네요
-
너무 특이한가 자주웃는 사람도 별로야 자주 우는사람도 별로여
-
저게 가능한가 사람인가 싶던 점수들 이제 내가 다 이겨버렷음 사실 아직 못 이긴 사람도 잇음
-
뭐임 3
뇌에 문제가 잇나
-
어쩔 건데. 못만나면 그만이야~
-
나는 극히 정상
-
미안해. 우린 만날 수 없어
-
하는게 없음;
-
무슨심리일까
-
또 신기록임 5
칭찬해줘
-
자기도 오르비하면서 내로남불임
-
안녕 해원누나야 7
-
내일 아이패드 못찾으면 14
진짜 홧병나서 뭔 짓을 할지 모르겟음
-
그것부터가 기만의 시작인 것임 그냥 기만하지마라 이런 말 할 필요가 없음 인생 자체가 기만인데
-
군상극을 원함 실존적 존재들의 투쟁을 그리고 싶음
-
모아보기 근황 3
-
인증함 6
ㅇ.
-
뭐 어때~
-
그래서 이거 모아보기 위에 클럽. 뭐시기뭐시기 이거 뭐임 9
아직도 정체를 모른다.
-
응응
-
배가 다시 아파짐. 야메추
-
나 화 잘 안 냄
대충봤는데 t^2=(2/t + 3)^2 에서 문제 생긴듯여
산술기하 최소가 되려면 둘이 같을 때 아닌가요..?
그건 x+1/x 요런꼴일때만 성립해용
산술기하평균쓸때는 곱이 상수가 나와야 합니다.
왜냐면 상수가 아니라 t로 최소가 표현되게 되면
그냥 그 t에서 부등식 성립하는거라
아 감사합니다 이해됐어요 그럼 혹시 복잡해지겠지만 그 부등식의 해를 구하면 답은 정상적으로 나오나여?
산술기하로 최소 찾는 메커니즘이
1. t에 대한 식에 산술기하를 씀 (t는 임의의 실수)
2. 부등호에 상수가 등장함 (곱이 상수, 혹은 합이 상수)
3. 그 상수를 만족시킬때 (=조건)가 존재함
4. 그럼 t의 대한 식은 명백히 그 지점을 지나며,
5. 그 지점은 부등호에 의해서 최소( 최대) 일 수 밖에 없음
이런 논리인데
상수가 안나올때 그냥 부등식 양변 풀고
= 조건 쓰게 되면
그냥 해보시면 알겠지만 아무 의미가 없습니다
왜 의미가 없는가
상수일때는 f(t)>=C (C는 상수)
혹은 C>=f(t) 였는데
상수가 아닐때는
f(t)>=루트g(t)
이런 느낌인거에요
그=조건이 성립할때 만난다 정도만 의미있는거죠
만약 상수가 아닐때 산술기하평균으로
최소를 찾고싶으시면
순서가 중요합니다
1. 원래 식 >=루트g(t)
이런식으로 나올텐데
루트g(t)의 최솟값을 찾기
2. 최솟값을 갖는 t에서 =조건이 성립함을 보이기
이러면
원래식>=루트g(t)>=루트g(t)의 최솟값
이때 루트g(t)가 최솟값을 가질때 f(t)=루트g(t)이므로 f의 최솟값도 찾을 수 있는거죠
산술기하는 그냥 항상 성립하는 부등식이지 최대/최소를 보장하는 부등식이 아님
보장되려면 한 쪽이 상수여야함
감사합니다 혹시 위에 질문도 알려주실 수 있나요