3모 질문
게시글 주소: https://orbi.kr/00072649939
이문제를 보고 공통접선을 어떻게 떠올릴수 있는거에요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
빌버드 붙야지나요? 잇올 탈주할 예정인데 아쉽당…
-
어째서? 도시테?
-
자기가 못생각하니 저 풀이의 실전성은 별로다 이거 곱씹어볼수록 너무 웃긴말같음...
-
(살며시 마이크를 누른다.)
-
잇올 재원생 3
5월달 전에 나갈지도 모르는데 재원생으로 6평 신청해도 상관없을까요?
-
kbs 리비에스 1
리비에스 좋다고 개씹 goat라고 하는 말이 많던데 김은양 안듣는 사람이 볼정도로...
-
투필수 해제된 이후로 많이 쉬워진 느낌이네요 아니면 깨달은건가
-
피부 좋아지고 싶은데 13
피부과라고만 하지말고 일상 쪽에서 팁 좀 주세여ㅕ
-
다른 커피와 마찬가지로 이뇨 작용이 활발해짐...
-
수분감 스텝2 잇는 애들까지 열심히 햇으면 충분히 할만함 특히 수1은, 수분감...
-
ㅈㄱㄴ 그당시 되게 어려웠데서요.. 대부분 1컷47이하로 잡은 게 기억나네요....
-
3월 학평으로 수능 독서 대비하기 - 반증의 원리, 예시형 보기 활용, 과정 속 문제해결 0
3월 학력평가 독서는 배울 점이 정말 많은 시험지였습니다. 어려운 기출들에서...
-
세 과목이 묘하게 흐름이 비슷함 선택자 수 각각 영역에서 꼴찌 기출이 중요함(어차피...
-
이제 멘헤라 지뢰계 메스가키 담요단이 되겠습니다
-
이거 이제 그냥 쓰면 손 베일거같은데
-
개초딩잼민이새끼라서 음 맞는말이야
-
공부 ㅇㅈ 6
샤인미 46문제풀었다
-
즉, 내가 싫어하는 오르비언은 오르비언이 아님
-
제목 그대로입니다... 대성패스 결제해놨는데(필수이론) 3주안에 인강까지 듣기에...
-
현역고3이고 고2 10모 72점 고3 3모 78점이에요 확률과통계 응시할거에요 기회...
좌변 -f(a)를 이항
그거까지 하고 접선이 그래프 보다 아래 있다 까진 알았는데 모고날 풀때는 -1에서랑 3에서 미계가 둘다 0이다 햇다가 틀렸거든요ㅠ 공통접선을 어느부분에서 생각해낼수있는건가요
a범위가 특이한 꼴이죠
존재했다가 존재할 수 없다가 존재했다가
f(x)는 최고차항이 양수인 사차함수 이기에 접선을 직접 그려보시면 맨 왼쪽에서 감소만 하는 구간/ 맨 오른쪽에서 증가만 하는 구간 여기서는 무조건 만족함을 쉽게 알아내실 수 있을거에요
-1과 3에서의 접선이 그래프보다 아래 있으므로 -1과 3에서 공통접선이겠죠
추가로 1에서의 기울기가 1이므로 공통접선의 기울기 1인것까지 체크 하시고
그 뒤는 식을 세워도 되고 거리곱으로 답 한번에 내도 되고 하시면 됨뇨
접선 그려보시면 이 접선이 접점 이외의 한 점에서 f(x)와 접할때까지 조건을 만족함을 알 수 있으니까
양끝경계를 결정할 수 있어요
양끝경계가 어떤걸 말하는겅가요?
사차함수 f(x)에 접선을 차려대로 그려보세요
그냥 일반적인 4차함수 개형 그리고 거기서 접선을 그어보는건가요?
그러면 그래프와 접선이 접점 이외의 점에서 접하지 않고 만나는 경우가 생기거든요
이때는 문제에서 제시한 조건을 만족시킬 수 없기에 접선까지가 a값의 범위가 된다는 뜻이에요
네네 f(x)의 개형에 대한 주요한 정보가 없으니까요
개형까진 그렸는데 접선을 그리면서 보는거는 -1하고 3 위치를 대강 잡고 그려보는건가요?
아 이렇게해서 그래프를 통과 안하는 직선이 만나는 그 지점이 3하고 -1 인건가요?
아뇨 접선을 그리시면서 가능한 범위를 찾아보셔야해요
그리고 찾은 위치랑 a값의 범위랑 비교해서 찾은 위치의 x좌표값을 구하시는 쪽으로 가는 게 맞아요
그러면 이건 다른거긴한데 만약에 조건에 f'(1)=0이라고 되어있으면 이런 그래프가 나오는건가요?
맞아요 거기서 사차함수의 개형을 잡을 수 있어요
너무 특수한 케이스 찍으려고 하지마시고 일반적인 상황에서 조건해석부터 차분히 하시고 들어가시면 시간도 더 많이 남을거에요
특수한 케이스 찍어서 풀리면 좋겠지만 만약에 특수한 케이스를 찍었는데 그게 답이 아니여서 안 풀리는 경우에는 뭐를 더해야할지도 불확실하고 그 문제부터 말리기 시작하더라고요
아 그렇군요!!! 감사합니다ㅠㅠㅠ
댓글 달기엔 많이 늦은 듯 한데
추가로 문제의 조건을 보고
아무 두 실수나 잡아서 (x_1 & x_2)
어떤 사차함수 위의 점에서 그은 “접선”과 그 “사차함수”와
x = x_1, x = x_2로 둘러쌓인 부분이 접선 위 있고 적분값이 양수이다
로 접근하면 현장에서도 바로 풀리더라고요.