3모 질문
게시글 주소: https://orbi.kr/00072649939
이문제를 보고 공통접선을 어떻게 떠올릴수 있는거에요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 안녕히주무세요 12
-
제곧내
-
안잠 1
걍 패턴망한김에 컵라면 먹음
-
디질거같다 자야지..
-
살려줘.. 목구멍 타들어가는듯함 ㅅㅂ
-
1. 단과 몇개 이상 들으면 재종 안 다니는 사람도 부엉이를 쓸 수 있는 건가요?...
-
공간도형 문제 공간벡터로 풀기임 진짜 하다가 정신이 망가질뻔함
-
16배수니까 2를 인수로 4개 이상 가진다인데 3개인 경우 2개인 경우 1개인 경우...
-
6모 학교에 모고 접수하려는데 저희학교는 방문접수만 가능하다고하는데 연락안하고...
-
서울대 수리과학,수교과나 정치외교학과,아시아언어문명학부 가고싶어 뒤질거 같습니다....
-
뭐가 더낫나용? 세젤쉬는 미친기분 시작편까지 같이하고 파데는 킥오프 같이하는거 맞나요?
-
행복이란 무엇일까 12
그것은 어디에도 없으며 동시에 어디에나 있구나우린 앞만 보고 살도록 배웠으니까주위에...
-
바로 넘 어려운거 하면 힘들꺼 같은데
-
학교에서 신청서에 사진 븥이는 게 없는데
-
남자분이 여자분한테 공개고백지르심 이것이 연평?
-
성대 인문논술 0
성대 논술은 특히 정형화 되어있다고 하잖아요. 그 중 성대 논술 1번 통합적...
-
아오
-
자는거랑 비슷한 효과가 있나요? 어디서 본 적 있는데
-
.
-
끝까지간다 2
난 이제 몰라
-
수학 22번 공략을 위한 『TARGET 22』 배포! 25
안녕하세요, 모노모노입니다. 교육과정 개정 이후 평가원은 최고난도 문제의 출제를...
-
버거가 많이 땡기네
-
아니 왜 안되는건데
-
언제나 어디서나 흘리는것
-
아에이오우
-
오르비 굿나잇 3
-
아 개졸려 ㅅㅂ 0
잔다
-
제가 5모에 몇 등급을 받을 수 있을까요?(5000덕) 7
맞추신 분껜 5모 당일 5000덕을 드리겠습니다 22322이런식으로 써주시면 됩니다
-
프사복귀완 0
재밌었어요
-
졸업 고등학교를 쓰라네요 검정고시는 돈 받지 말라는 건가... 얼른 자야 하는데...
-
오랜밤오랜만 7
이에요 잘자용
-
배고파졋어 0
자러갈래
-
만우절 재밌었네 0
음
-
어째서저런모고를
-
애매한 시간 국어 수학 애매하게 할 바에야 그냥 경제로 다 때려야겠다
-
07현역인데 방학때 개 열심히 하다가 3모때 국어 높3뜨고 사기 꺾여서 다시...
-
오늘의 교훈 0
공간도형 문제를 공벡으로 풀려하지말자..
-
사정상 재수를 못 하게 되어서 양도해요 쪽지로 생각하시는 가격도 제시해주세요!...
-
아 졸려 2
아 너무 졸려 이제 진짜 자야겠다 잘자요
-
주무십셔 2
ㅂㅂ
-
하나 풀엇다 으응
-
애석하게도 거짓말입니다 난 쓰레기야...
-
덕코날린줄알았는데
-
퀄리티가 심상치 않은데
-
경기권 일반고 고1 내신 국어5 수학4.5 영어2 통과2.5 국어 수학...
-
난 말미잘임
-
안녕여붕아너를처음본순간부터좋아했어5월전에고백하고싶었는데바보같이그땐용기가없더라지금은이수...
-
네코 5
냐옹♡
-
꺼진 화면 속 비치는 나의 얼굴이…
-
둘다비활타서 이제 내 본계정한테 보내는 중이야
좌변 -f(a)를 이항
그거까지 하고 접선이 그래프 보다 아래 있다 까진 알았는데 모고날 풀때는 -1에서랑 3에서 미계가 둘다 0이다 햇다가 틀렸거든요ㅠ 공통접선을 어느부분에서 생각해낼수있는건가요
a범위가 특이한 꼴이죠
존재했다가 존재할 수 없다가 존재했다가
f(x)는 최고차항이 양수인 사차함수 이기에 접선을 직접 그려보시면 맨 왼쪽에서 감소만 하는 구간/ 맨 오른쪽에서 증가만 하는 구간 여기서는 무조건 만족함을 쉽게 알아내실 수 있을거에요
-1과 3에서의 접선이 그래프보다 아래 있으므로 -1과 3에서 공통접선이겠죠
추가로 1에서의 기울기가 1이므로 공통접선의 기울기 1인것까지 체크 하시고
그 뒤는 식을 세워도 되고 거리곱으로 답 한번에 내도 되고 하시면 됨뇨
접선 그려보시면 이 접선이 접점 이외의 한 점에서 f(x)와 접할때까지 조건을 만족함을 알 수 있으니까
양끝경계를 결정할 수 있어요
양끝경계가 어떤걸 말하는겅가요?
사차함수 f(x)에 접선을 차려대로 그려보세요
그냥 일반적인 4차함수 개형 그리고 거기서 접선을 그어보는건가요?
그러면 그래프와 접선이 접점 이외의 점에서 접하지 않고 만나는 경우가 생기거든요
이때는 문제에서 제시한 조건을 만족시킬 수 없기에 접선까지가 a값의 범위가 된다는 뜻이에요
네네 f(x)의 개형에 대한 주요한 정보가 없으니까요
개형까진 그렸는데 접선을 그리면서 보는거는 -1하고 3 위치를 대강 잡고 그려보는건가요?
아 이렇게해서 그래프를 통과 안하는 직선이 만나는 그 지점이 3하고 -1 인건가요?
아뇨 접선을 그리시면서 가능한 범위를 찾아보셔야해요
그리고 찾은 위치랑 a값의 범위랑 비교해서 찾은 위치의 x좌표값을 구하시는 쪽으로 가는 게 맞아요
그러면 이건 다른거긴한데 만약에 조건에 f'(1)=0이라고 되어있으면 이런 그래프가 나오는건가요?
맞아요 거기서 사차함수의 개형을 잡을 수 있어요
너무 특수한 케이스 찍으려고 하지마시고 일반적인 상황에서 조건해석부터 차분히 하시고 들어가시면 시간도 더 많이 남을거에요
특수한 케이스 찍어서 풀리면 좋겠지만 만약에 특수한 케이스를 찍었는데 그게 답이 아니여서 안 풀리는 경우에는 뭐를 더해야할지도 불확실하고 그 문제부터 말리기 시작하더라고요
아 그렇군요!!! 감사합니다ㅠㅠㅠ
댓글 달기엔 많이 늦은 듯 한데
추가로 문제의 조건을 보고
아무 두 실수나 잡아서 (x_1 & x_2)
어떤 사차함수 위의 점에서 그은 “접선”과 그 “사차함수”와
x = x_1, x = x_2로 둘러쌓인 부분이 접선 위 있고 적분값이 양수이다
로 접근하면 현장에서도 바로 풀리더라고요.