3모 질문
게시글 주소: https://orbi.kr/00072649939
이문제를 보고 공통접선을 어떻게 떠올릴수 있는거에요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4월 4일 진짜로 탄핵 가결되나요? 진짜 객관적으로 봤을 때 가능성이 어느정도인가요??
-
일단 사장님이 2
일 나오라고 하실때만 나가야지 대타요청은 말씀안드리는게 맞겠다
-
첫 모의고사 점수는 부진한데 단기간에 독해력 잘 올리는 거 3달만에 5->2,...
-
경국대.... 2
무슨 드라마에 나올 법한 대학 이름이네 차라리 국립안동대라 바꾸지... 안동대...
-
니가 사람이냐..
-
인강에서 알려주는 글을 읽는 태도 << 이건 정말 도움이 많이 됐습니다 그러나 특히...
-
소나기는 소를 두고 내기를 했다 하여 소내기>소나기의 변화를 아주머니는 아기주머니를...
-
뻐큐 순화한 거 존나 아쉬운데 두번째 그림 ㅈㄴ 귀여워서 맘에 듦
-
윤동주 부끄러움 키워드 발견, 기형도 발견, 안도현 발견 마광수가 없으면 이 둘은...
-
3등급인데 단어장+기파급+기출 하려고 합니다
-
중경외시 전전 다니는데 1달 다닌 후 그냥 뭔가 학교나 과도 불만족스럽긴해서...
-
수학 n제 추천 1
한석원쌤 4의규칙 풀고 있는데 현우진쌤 드릴 가기전에 하나 더 풀고 싶은데 뭐가 좋을까요?
-
직독직해로 하는편임?? 아님 어케 하는편임? 직독직해로 하니까 글 이해도 잘 안되고...
-
맛점하셨나요? 3
뻥이요
-
으흐흐
-
날씨가 좋네오 2
네오네오
-
대부분의 강사들이 영어 해석은 직독직해가 기본이라고 주장하고, 가르친다 하지만,...
-
마치 수학 1등급의 벽 같구만 아무리 수학을 공부했어도 1등급은 나오지않고 항상 2등급이었지..
-
팔로우수 그대로..
-
일단 보수 본진은 극우가 되어버렸고 거의 멸망했다고 보면 됨 하지만 민주당도 이제...
좌변 -f(a)를 이항
그거까지 하고 접선이 그래프 보다 아래 있다 까진 알았는데 모고날 풀때는 -1에서랑 3에서 미계가 둘다 0이다 햇다가 틀렸거든요ㅠ 공통접선을 어느부분에서 생각해낼수있는건가요
a범위가 특이한 꼴이죠
존재했다가 존재할 수 없다가 존재했다가
f(x)는 최고차항이 양수인 사차함수 이기에 접선을 직접 그려보시면 맨 왼쪽에서 감소만 하는 구간/ 맨 오른쪽에서 증가만 하는 구간 여기서는 무조건 만족함을 쉽게 알아내실 수 있을거에요
-1과 3에서의 접선이 그래프보다 아래 있으므로 -1과 3에서 공통접선이겠죠
추가로 1에서의 기울기가 1이므로 공통접선의 기울기 1인것까지 체크 하시고
그 뒤는 식을 세워도 되고 거리곱으로 답 한번에 내도 되고 하시면 됨뇨
접선 그려보시면 이 접선이 접점 이외의 한 점에서 f(x)와 접할때까지 조건을 만족함을 알 수 있으니까
양끝경계를 결정할 수 있어요
양끝경계가 어떤걸 말하는겅가요?
사차함수 f(x)에 접선을 차려대로 그려보세요
그냥 일반적인 4차함수 개형 그리고 거기서 접선을 그어보는건가요?
그러면 그래프와 접선이 접점 이외의 점에서 접하지 않고 만나는 경우가 생기거든요
이때는 문제에서 제시한 조건을 만족시킬 수 없기에 접선까지가 a값의 범위가 된다는 뜻이에요
네네 f(x)의 개형에 대한 주요한 정보가 없으니까요
개형까진 그렸는데 접선을 그리면서 보는거는 -1하고 3 위치를 대강 잡고 그려보는건가요?
아 이렇게해서 그래프를 통과 안하는 직선이 만나는 그 지점이 3하고 -1 인건가요?
아뇨 접선을 그리시면서 가능한 범위를 찾아보셔야해요
그리고 찾은 위치랑 a값의 범위랑 비교해서 찾은 위치의 x좌표값을 구하시는 쪽으로 가는 게 맞아요
그러면 이건 다른거긴한데 만약에 조건에 f'(1)=0이라고 되어있으면 이런 그래프가 나오는건가요?
맞아요 거기서 사차함수의 개형을 잡을 수 있어요
너무 특수한 케이스 찍으려고 하지마시고 일반적인 상황에서 조건해석부터 차분히 하시고 들어가시면 시간도 더 많이 남을거에요
특수한 케이스 찍어서 풀리면 좋겠지만 만약에 특수한 케이스를 찍었는데 그게 답이 아니여서 안 풀리는 경우에는 뭐를 더해야할지도 불확실하고 그 문제부터 말리기 시작하더라고요
아 그렇군요!!! 감사합니다ㅠㅠㅠ
댓글 달기엔 많이 늦은 듯 한데
추가로 문제의 조건을 보고
아무 두 실수나 잡아서 (x_1 & x_2)
어떤 사차함수 위의 점에서 그은 “접선”과 그 “사차함수”와
x = x_1, x = x_2로 둘러쌓인 부분이 접선 위 있고 적분값이 양수이다
로 접근하면 현장에서도 바로 풀리더라고요.