3회 12번에 관하여
게시글 주소: https://orbi.kr/00072634025
종종 이렇게 질문 올라오는 문제에 관하여서는 설명드리려 합니다.
일단 난이도에 관하여서 언급하자면, (어렵다는 글들을 봐서 ㅠ)
실제로 조금 참신한 문제이며, 12번이 아닌 21번에 배치할까도 고민했던 문항입니다.
이 문제의 핵심적인 개념은
'수열의 합 Sn도 수열이라는 것, 그리고 일반항 수열 {an}과 합수열 {Sn}의 관계'입니다.
일단 전부 1~8까지의 합인데, 세번째 식만 2~9까지죠? 일관성있게 세번째 식을
이라고 해봅시다. 그렇게 되면 여러분은 떠올리셔야 합니다.
사람은 한 번에 두 가지가 변하면 고려하기 힘이 듭니다.
그럼 되도록이면 {an}이라는 수열과 {Sn}이라는 수열을 통일해주는 것이 좋죠.
그럼 두 수열의 관계는 무엇이죠?
입니다.
그렇기에, 세 식을 다음과 같이 바꿔보죠.
두 번째 식은 바로 보이네요. 소거법을 이용하면
이 되네요.
관건은 첫번째 식과 세번째 식을 적절히 조립하는 것일텐데...
사실 수1 수열의 합에서 저희가 배운 논리는 소거되는 형식, 등차 등비의 합 이외에는 없습니다.
그럼 두 번째 식에서와 비슷하게 소거되는 형식을 의심해야겠죠?
애초에 첫번째 식, 세번째 식 모두 Sn에 대한 이차식들로 이루어져 있기도 하니까요.
전개를 통해
의 항들을 전부 없애줍시다.
이는 첫번째 식에 2배를 하고, 세번째 식을 더해주면 됩니다.
정리하면
가 나오네요!
소거 및 합차공식을 이용하면
가 되어, 앞의 S9-S1과 연립하면
이 되어, S1=6이 나옵니다.
S1은 결국 a1과 같다는 개념을 통해 a1=6입니다.
12번치고 어려운 문제가 맞습니다.
다만 여러분이 기억하시듯이
객관식 오답률 1위가 12번이었던 과거가 평가원에도 있습니다.
그리고 해당 3회차의 15, 21도 살짝 다른 회차보다는 덜 어려웠을 거에요.
이전 글에서도 간접적으로 얘기했지만,
남들보다 앞서가려면 전례가 없던 것을 대비하셔야 합니다.
뭔가 간혹 어려운 문제라서 문제가 안좋다고 여기시는 듯 하는 글들을 봤는데..
일단 저는 이 업계에 4년은 구른 전문가입니다.
사교육 스킬들이 많이 적용되는 문제들은 저도 싫고, 안 만듭니다.
애초에 요새 업계 동향상 그런 문제들은 잘 판매가 되지도 않아요 ㅋㅋ
이번 N제에는 억지스러운 문항을 넣지 않았습니다.
저는 문제 퀄리티에 한해서는 매우 당당해서
가끔씩 질문 올라오는 제 문제들(당연히 전부는 아니지만) 보여드리기도 할게요 ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이번 3모 수학이 작수보다 어렵다는 평이 많은데 이번3모가 실제 수능이었다면 등급컷 어느정도일까?
-
진짜 대체 왜 존재하는지 모르겠다
-
예전에 풀었을 때 한번 낚였었는데 또 낚임.. 아 백옥루 보면서 깨달은거구나 ..
-
군침이 피젯스피노 24
-
4덮까지 쉴까 8
비호감 게이지도 줄겠지 그러면 성적도 올리고오면 더 좋고
-
눈팅만 하다 글써봅니다 잘부탁드려요!
-
뭐지 수1은 이해원 시즌2로..? 샤인미 풀고 풀려 했는데
-
쌍사 0
쌍사 작년 기준으로 3등급이면 탐구 그냥 다른 거로 옮길까요..?ㅠㅠ
-
컨셉질 끝 4
좋은 밤 보내세용
-
김승리 커리탔는데 문학은 ㅈㄴ좋은데 비문학은 현장에서 못써먹겠음 메가대성 둘다있는데 ㅊㅊ좀
-
방송 보고싶다 1
돌아와 푸바오
-
11모 성적유출 사태 이후로 아예 5월에 내나 보네 한번만 그럴줄 알았는디
-
나는 사람들 못속이겠네..
-
휴릅 쉽지 않다 9
사는데 재미를 느낄만한게 너무 없다 요즘은
-
흠...
-
작수 39고 사문은 작수 때 지나치게 꿀이어서 낌새 이상해서 배제할 거임
-
깝치지마 12
자러갈거니까
-
확 풀어버릴라니깐
-
학교 1년 다니다가 군대다녀오고하면 5수쯤 나이쯤 됨
-
제 전닉 아시는 분 14
전생닉이라도
-
흠
-
담임이 공동체를 위해 노력해라~ 이렇게 은연중에 세특에 꼽써놨던데 이거 영향...
-
다른 커피와 마찬가지로 이뇨 작용이 활발해짐...
-
없겠지??으흐흐
-
잘 만들긴했는데 예상한거랑 좀 많이 다르네 그래도 기억에 잘 남기는할듯
-
현역 수학.. 0
개념에센스 수1 수2 1회독 끝났는데 복습 제대로 안해서 3모 3입니다 이제...
-
하투하 이안이랑 동갑
-
언미사2해서 연치가려면 내신성적 안좋으면 많이 불안할까요? 거의 만점권 받으면...
-
기숙학원 어디있나요?? 잘 못찾겠어요ㅠㅠㅠㅠ
-
왕잘하는아사람 10
이 되고 싶다
-
이기상 이만복 0
필수임?? 수강생 분들 후기좀여
-
올비에 08누구있음? 26
내가 직접 스팸메일이 되야겠어
-
21세기에 태어났으면 다 귀여울수 있다고 생각해요
-
으악
-
하.. 1문단만 조금 겹치고 나머지는 딴판인 지문이 ebs연계 대표문항임
-
저 그때랑 커뮤를 대하는 태도가 많이 다른데
-
최근 증원이니 필수의료패키지니 뭐니 의대생들이 동맹휴학(본인들은 자발적인 것이라고...
-
귀여움 메타임? 10
이 사람이 제일 귀엽다
-
06 최하위 0
-
심심하네 x지좀 13
쪽지좀
-
두둥둥장 14
두둥퇴장 저요즘오르비잘 안들어오는데...
-
6모배틀뜰사람 15
이제 공부좀 열심히 해야할거같아서 사람마다 밸런스조정 들어가겠습니다
-
자러감 인사해줘 12
-
귀엽지가 않아서 3
대화에 못끼겠네요 그냥 멀리서 어버버
-
춥네 6
으스스
-
[3차]6월 학평 대결에 참여할 08년생 분들을 구합니다 7
안녕하세요, 중의적 표현입니다. 지난 3월 학력평가에서 강해린08님과의 대결이...
-
닉네임이 많아요 2
유동닉이에요
-
동접하면 안되는 줄 모르고 오늘 처음 동접했는데 이거 걸리나요? 책 배송지는 같은...
막막해 보일 수 있지만 해야 할 일을 따박따박 하면 답에 도달할 수 있는
깔끔한 문제네요
이러시면 곤란해요...올해는 내가 이걸 살 이유가 없는데...진짜 없는데 아
12번에 걸려있다면 정말 회자될 문제난이도긴하네요
지인선 n제가 대단한 이유는
계속 트렌드에 맞춰 변화하고
가능한 모든 경우의 수를 비약 없이 담고 있다는 것.
저거 내기준 저 회차에서 제일 어려웠음... ㅋㅋㅋ
지인선 꽤 어려운 편이죠? 2도 빡세겠죠..?
빡세긴 하나 배울 것은 많으실 거에요
고맙습니다 올해 꼭 풀어볼게요
퀄이 낮다 - 내가 풀던 번호를 못 풀었다
퀄이 좋다 - 내가 못 풀던 번호가 풀렸다
이중극한 문제도 올려주세오