수학황님들 제발 도와주십시오
게시글 주소: https://orbi.kr/00072631923
1. 전제가 거짓이면 결론이 거짓이다
이명제는 반례가 있어서 거짓임
1의 반례는
(나는 컵이다, 컵은 동물이다) 라는 전제가 거짓이어도
(나는 동물이다) 는 참인결론임
따라서 1의 부정이 참
p->q의 부정은 p and not q
따라서 1의 부정은
2. 전제가 거짓 and 결론이 참
p and q 가 참이면 p->q도 참
따라서
3. 전제가 거짓이면 결론이 참
결론
전제가 거짓이면 결론이 참
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
야구장이나 가볼까 20
읏차
-
근데 탈퇴하면 1년간 동일 휴대폰 번호로 못들어온다는데 5
그럼 나중에 정보 필요해서 오고싶어도 못오는건가요 아니면 폰번호 말고...
-
3회 12번에 관하여 13
종종 이렇게 질문 올라오는 문제에 관하여서는 설명드리려 합니다. 일단 난이도에...
-
제가 영어 학원안다니고 주말마다 고1 3모 혼자풀고있어요. 듣기는 1~2개틀리는데...
-
물1 질문 3
물체를 단순히 저렇게 위치만 바꿨을 때 실에 걸리는 장력이 유지된다고 들었던것...
-
재수생의 3모 1
국어는 가나지문 날렸는데 이거 백점있을까요? ㅋㅋㅋ 존나 어렵던데
-
이걸 어떻게 마셔
-
여르비로 간주하면 되는거지?
-
한장(두페이지)에 한문제 이러는거 너무 싫음 어싸처럼 한장 펼치면 최소 4문제는 있으면 좋겠음
-
언매하시는 분들 1
올해 수특 혹시 다들 푸셨나요??? 안푸셨으면 평가원화해서 선별본을 올려드릴까…
-
미용실에서 2
예약시간보다 10분 빨리 오고 예약시간보다 1시간+@를 더 기다린건 첨임 처음 와보는곳인데..
-
이게 마지막 고비겠죠
-
문학 독학으로 해도 문제없을까요..? 메가퍄스가 없어서..책만 구매하려하는데
-
와 ㅅ 깜짝이야 4
정품인증 뜬줄 알았는데 라이센스 받은 거였네
-
오늘도 집회소리때문에 뒤질거 같은 종로구민
-
15번을 찍맞했습니다. 수학을 더 올리고 싶은데 이 시점에서 뭘 하면 좋을까요?
-
와 ㅅㅂ 미치겠다 싸고 말려야하나 오늘 날씨 ㅊ 워서 금방 마르던데
-
다이빙 끝나고 1
개피곤한 상태에서 다같이 저녁먹고 2차 가자는거 나 포함 새내기애들이 거절 ㅋㅋㅋ...
-
아오ㅗㅗㅗㅗㅗㅗㅗㅗ
-
기다려 오뿌이들
화면 속 논증은 다음과 같은 이유로 참이 아닙니다.
논증의 오류:
* 전제 1의 반례: 제시된 반례는 전제가 거짓일 때 결론이 참일 수 있음을 보여줍니다. 하지만 이는 전제가 거짓이면 결론이 항상 거짓이라는 명제를 반박하지 않습니다.
* 부정의 오류: p -> q의 부정은 p and not q가 맞습니다. 그러나 이를 통해 "전제가 거짓 and 결론이 참"이라는 명제가 참이라는 결론을 도출하는 것은 논리적 비약입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 결론은 전제 1의 부정과 같습니다. 이는 전제 1이 거짓임을 증명할 뿐, 해당 결론이 항상 참임을 의미하지 않습니다.
올바른 논리:
* 전제 1의 의미: 전제 1은 조건 명제(p -> q)입니다. 조건 명제가 거짓이 되는 경우는 전제가 참이고 결론이 거짓인 경우뿐입니다.
* 전제 1의 부정: 전제 1의 부정은 "전제가 참이고 결론이 거짓"입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 명제는 조건 명제가 아닙니다. 따라서 전제 1의 부정과 직접적인 관련이 없습니다.
결론적으로, 화면 속 논증은 논리적 오류를 포함하고 있으며, 제시된 결론은 참이 아닙니다.
반례가 있는데 왜 반박하지 않는다는거죠?
(나는 컵이다, 컵은 식물이다)라는 전제가 거짓이어도
(나는 식물이다)는 거짓인 결론임
1.전제가 거짓이면 결론이 거짓이다
1번명제가 거짓임을 반례를 들었잖음
3.전제가 거짓이면 결론이 참이다
3번 명제가 거짓임을 반례를 들었잖음
흠.. 사실 "나는 식물이다"가 참인게 아닐까요? 억지긴 한데.. 1번의 반례가 있으니 1번이 거짓이고 1번의 부정이 참이다 라는게 틀린논리는 아니지않나요?
그런 식의 억지면 토론 자체가 무의미함.
그렇게 치면 '나는 동물이다'도 거짓임
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
님이 직접 억지라고 해놓고 '이게 억지인가요?' 하고 물으면 어쩌자는 거임?
ㅈㅅ.. 다시 한번만 고려해주셈
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
참 or 거짓 이라는 이분법적인 현대논리학으로는 절대진리에 다다를 수 없음
원래 세상사가 참이라고 할 수도, 거짓이라 할 수도 없는, 옳고 그름을 논할 수 없는 거임
아니 샹 3천덕 안 주시면 삐져서 바로 신고 조질 거임..
오천덕드림
와 ㅅㅂ 바로 공중제비 조집니다 감사합니다 행님