수학황님들 제발 도와주십시오
게시글 주소: https://orbi.kr/00072631923
1. 전제가 거짓이면 결론이 거짓이다
이명제는 반례가 있어서 거짓임
1의 반례는
(나는 컵이다, 컵은 동물이다) 라는 전제가 거짓이어도
(나는 동물이다) 는 참인결론임
따라서 1의 부정이 참
p->q의 부정은 p and not q
따라서 1의 부정은
2. 전제가 거짓 and 결론이 참
p and q 가 참이면 p->q도 참
따라서
3. 전제가 거짓이면 결론이 참
결론
전제가 거짓이면 결론이 참
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
안가람t 대기 0
안가람t 대기 있나요? 서바시즌 때부터 들으려면 언제 대기 걸어야되나요?
-
. . . . 어그로 정말 죄송합니다. 현역 3모 턱걸이 3등급이고, 수학2...
-
솔직히 나 주제에 3모 23
15 21 맞췄으면 잘한거임 라고 오늘도 생각하는 낮2임
-
그래도 고1이라 지금 풀어보면 그때보단 훨씬 잘풀림 물론 고1 첫 시험치고 너무...
-
3등급 미적이인디 오늘부터 뉴런 시작햇아오 근데 만약 띰 하나에 문제 6개면 반절을...
-
덕코 기부 1000덕 5명
-
이번 3모는 좀 그럼.. 퀄이 좋은것도 아니구
-
안녕하세요. 현월이에요. 벌써 3월이 끝났어요. 여러분의 지난 한 달은...
-
동강동강
-
아직도 읽을 게 산더미임 언제 다 읽지. 남들 책 사듯이 논문 다운만 미친 듯이...
-
시대인재 볼텍스 0
시대인재 볼텍스 손풀이 해설영상 아직 리클래스에 올라온건가요???????? 진짜...
-
. 아이고 07살려.....
-
저만 그론가요
-
몬스터 2캔 쳐 먹어서 그런거였음... 1캔만 먹으니까 슬슬 졸리네
-
오늘도 신나는 하르 즐거운 하르를 써야함.
-
서바시즌 개강일 1
생명 시대라이브로 서바시즌부터 듣고싶은데 언제부터 서바시즌인가요?
-
22 고1 3모가 댜충 1컷 76에 만점자 없었는데 이번엔 1컷 78이면 그정돈...
-
대대대대대대대 4
대대대대대대ㅐ
-
내신 언매하면 4
수능 언매는 효자과목이 되나요?
-
지인선n제 풀까
-
화1 유지 및 국수영 투자 vs 화1 대신 노베 지1 공부 0
안녕하세요, 현재 다수의 의견에 추천을 받아 화1 대신 노베 지1 개념 및 기출...
-
학원에서 준 우리 지역 기출을 벅벅.. 서울권 기출은 그냥 유기하는 중.....
-
작수 언매 89점(언매 0틀) 3덮 언매 91점(언매 3틀) 3모 언매 87점(언매...
-
2025학년도 건국대 논술 기출(선행학습평가) : 네이버 블로그 2025학년도...
-
아니면 N제만 풀까요?
-
롤렉스 청콤 아니어도 씹병신 이미지임?
-
그냥 독서실보단 독재가 낫긴할까요? 브모님이 도와주신다고는 하는데 너무 죄송해서...
-
다른 과목들은 방향이나 실력 향상 등 안정되고 있다 생각이 드는데 영어는 어떻게...
-
섭마 청콤 같은거 제외하고 븗베54 레다 오메가 데이트 청콤 정도일려나
-
절 받아줄 곳은 어디일까요..
-
귀염뽀짝이 추구미인데
-
난
-
의대생 어카냐 1
생활패턴 박살났을텐데
-
플래너를 쓰신다면 지금 쓰시는 플래너들의 장단점, 플래너를 쓰지 않으신다면 그 이유가 궁금합니다!
-
ㄹㅈㄷ.... 채점했을때는 2점짜리 틀린 정황이 없었는데 선생님께 얘기해서 오엠알...
-
우리 단과쌤은 4~5퍼정도 나올거라고 하시던데 다른 사람들은 몇퍼정도로 예상하시나요?
-
개정전 시발점이랑 지금 뉴런이랑 비교하면 다이어트 눈커짐 피부 패션 분필 그냥 다 바뀜
-
학생들 꼬락서니보고 어휘 이렇기 안내겠지?
-
심지어 쇤베르크지문 4~9번 중에서 유일하게 틀린게 어휘임
-
서럽다 1
왜 자꾸 지구 2페를 틀리는것인가
-
합성함수 극대극소구나
-
웬만하면 안틀리네
-
맘에들어
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
세트로 안팔랴 슈발
-
삼수하고싶다 1
현실도피하기딱좋음 내년에 전장받을 성적 반들어야징~
화면 속 논증은 다음과 같은 이유로 참이 아닙니다.
논증의 오류:
* 전제 1의 반례: 제시된 반례는 전제가 거짓일 때 결론이 참일 수 있음을 보여줍니다. 하지만 이는 전제가 거짓이면 결론이 항상 거짓이라는 명제를 반박하지 않습니다.
* 부정의 오류: p -> q의 부정은 p and not q가 맞습니다. 그러나 이를 통해 "전제가 거짓 and 결론이 참"이라는 명제가 참이라는 결론을 도출하는 것은 논리적 비약입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 결론은 전제 1의 부정과 같습니다. 이는 전제 1이 거짓임을 증명할 뿐, 해당 결론이 항상 참임을 의미하지 않습니다.
올바른 논리:
* 전제 1의 의미: 전제 1은 조건 명제(p -> q)입니다. 조건 명제가 거짓이 되는 경우는 전제가 참이고 결론이 거짓인 경우뿐입니다.
* 전제 1의 부정: 전제 1의 부정은 "전제가 참이고 결론이 거짓"입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 명제는 조건 명제가 아닙니다. 따라서 전제 1의 부정과 직접적인 관련이 없습니다.
결론적으로, 화면 속 논증은 논리적 오류를 포함하고 있으며, 제시된 결론은 참이 아닙니다.
반례가 있는데 왜 반박하지 않는다는거죠?
(나는 컵이다, 컵은 식물이다)라는 전제가 거짓이어도
(나는 식물이다)는 거짓인 결론임
1.전제가 거짓이면 결론이 거짓이다
1번명제가 거짓임을 반례를 들었잖음
3.전제가 거짓이면 결론이 참이다
3번 명제가 거짓임을 반례를 들었잖음
흠.. 사실 "나는 식물이다"가 참인게 아닐까요? 억지긴 한데.. 1번의 반례가 있으니 1번이 거짓이고 1번의 부정이 참이다 라는게 틀린논리는 아니지않나요?
그런 식의 억지면 토론 자체가 무의미함.
그렇게 치면 '나는 동물이다'도 거짓임
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
님이 직접 억지라고 해놓고 '이게 억지인가요?' 하고 물으면 어쩌자는 거임?
ㅈㅅ.. 다시 한번만 고려해주셈
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
참 or 거짓 이라는 이분법적인 현대논리학으로는 절대진리에 다다를 수 없음
원래 세상사가 참이라고 할 수도, 거짓이라 할 수도 없는, 옳고 그름을 논할 수 없는 거임
아니 샹 3천덕 안 주시면 삐져서 바로 신고 조질 거임..
오천덕드림
와 ㅅㅂ 바로 공중제비 조집니다 감사합니다 행님