수학황님들 제발 도와주십시오
게시글 주소: https://orbi.kr/00072631923
1. 전제가 거짓이면 결론이 거짓이다
이명제는 반례가 있어서 거짓임
1의 반례는
(나는 컵이다, 컵은 동물이다) 라는 전제가 거짓이어도
(나는 동물이다) 는 참인결론임
따라서 1의 부정이 참
p->q의 부정은 p and not q
따라서 1의 부정은
2. 전제가 거짓 and 결론이 참
p and q 가 참이면 p->q도 참
따라서
3. 전제가 거짓이면 결론이 참
결론
전제가 거짓이면 결론이 참
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
백업해둘걸 클났다
-
사랑을 논할 자격이 업다...
-
기억하는 사람 있으려나
-
그렇습니다
-
너무 어렵네. 할 말은 많고. 막 울거같고
-
부계, 본계 두개 다 센츄 넣어버림(똑같은 신상정보로) 잘못 넣었다고 본계만 센츄...
-
만우절 기념 3년간 좋아했던 고등학교 친구한테 고백하겠어 12
남고출신입니다
-
단, 1일 한정
-
벌써 1년의 1/4이 다 간 거임
-
.
-
그 날 날씨가 좋았어요 바람도 시원하고
-
올해 국어는 0
EBS 6 9모 학습이 끝이지 않을까요... 수학 탐구 하기도 모자람
-
새벽 경제 야르 0
영호 아저씨 볼뽀뽀 마렵네 으흐흐
-
약간 생겨먹은게 섹스 같음 안그래도 sex라는점에서섹스인데 c...c까지있어...
-
어쩌지 고백할까
-
24때 5가 1개라 충격이었는데
-
자라 7
잠
-
하 못참겠다 이 정벽 가시나 대구로 쏩니데이
-
하반기에 국어 제외하고 실모 위주로만 공부할 거고 본인 생각하고 있는 건 국어 /...
-
윤석열 원영턴 2
-
NM? 너 재능있어 열심히 해
-
나의 말:ㅎㅇㅎㅇ ㅋㅋ 오르비에 어그로 글 쓰려고 하는데, 명문대 나와도 인생 망한...
-
이렇게 기분이 축 쳐질때 해결책이 있을까요..?
-
그래보임
-
잘자요 4
만우절 오르비를 보고 싶지만 내일도 6시반 기상...
-
어렵다...ㅋㅋ 운좋게 적백달성 특이사항은 미적 28,30이 엄청 쉽게 나왔다...
-
허수물화러 아시는분 계실려나
-
발상이 한 20년쯤 앞서 있음
-
이거 실친들은 다 아는 닉네임인데
-
돌아보니 몇 안되는 정시공부할 수 있는 시간이였는데..
-
반수할 예정인데 송파메가스터디 재종 가는게 나을까요 아님 잇올 다니면서 수학 단과...
-
투표) 서울대 내신CC확정이면 투과목 하는거 병신짓임?? 11
대깨설이라 생1지1애서 생2지2하는중인데 현실객관화하고 대가리 봉합해야함?? 목표는...
-
스블 질문 0
스블 회독하는거로 기출 충분함?
-
ㅇㅇ 30분뒤부터
-
그것도 못하시나요! 훔쳐오고 싶은 사람 프로필에 들어가서…
-
페북 연애 특 6
오래가 헤어짐 언급ㄴ
-
Day2 4번 이거 정답 잘못나온거 맞죠?
-
과탐은 강사가 탐구 하나를 아예 먹어버리고 안락사시키는게 신기하네 10
사탐은 지리 말고는 그런거 없는 거 같은데
-
올1등급 6모 성적표를 보장하라
-
ㅈㄱㄴ
-
더프 보정컷 2
기준이 뭐임..? 지구는 백분위가 7이 오르는데..?
-
10년전) 2
야 나랑 사귈래(진짜임) 싫어 뭐래(진짜임) 아 만우절이잖아 ㅋㅋㅋ
-
몇년몇월 입대해서 26,27수능 중 어느거 보실건지 알 수 있을까요?? 11월에...
-
왜 제 주변 부모님 지인의사분들은 한경중이 그냥 그렇다고 하시는지 모르겠네요. 물론...
-
우리 집 와이파이 <-- JOAT
-
지금이라도 틀어야하나
화면 속 논증은 다음과 같은 이유로 참이 아닙니다.
논증의 오류:
* 전제 1의 반례: 제시된 반례는 전제가 거짓일 때 결론이 참일 수 있음을 보여줍니다. 하지만 이는 전제가 거짓이면 결론이 항상 거짓이라는 명제를 반박하지 않습니다.
* 부정의 오류: p -> q의 부정은 p and not q가 맞습니다. 그러나 이를 통해 "전제가 거짓 and 결론이 참"이라는 명제가 참이라는 결론을 도출하는 것은 논리적 비약입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 결론은 전제 1의 부정과 같습니다. 이는 전제 1이 거짓임을 증명할 뿐, 해당 결론이 항상 참임을 의미하지 않습니다.
올바른 논리:
* 전제 1의 의미: 전제 1은 조건 명제(p -> q)입니다. 조건 명제가 거짓이 되는 경우는 전제가 참이고 결론이 거짓인 경우뿐입니다.
* 전제 1의 부정: 전제 1의 부정은 "전제가 참이고 결론이 거짓"입니다.
* 결론의 오류: "전제가 거짓이면 결론이 참"이라는 명제는 조건 명제가 아닙니다. 따라서 전제 1의 부정과 직접적인 관련이 없습니다.
결론적으로, 화면 속 논증은 논리적 오류를 포함하고 있으며, 제시된 결론은 참이 아닙니다.
반례가 있는데 왜 반박하지 않는다는거죠?
(나는 컵이다, 컵은 식물이다)라는 전제가 거짓이어도
(나는 식물이다)는 거짓인 결론임
1.전제가 거짓이면 결론이 거짓이다
1번명제가 거짓임을 반례를 들었잖음
3.전제가 거짓이면 결론이 참이다
3번 명제가 거짓임을 반례를 들었잖음
흠.. 사실 "나는 식물이다"가 참인게 아닐까요? 억지긴 한데.. 1번의 반례가 있으니 1번이 거짓이고 1번의 부정이 참이다 라는게 틀린논리는 아니지않나요?
그런 식의 억지면 토론 자체가 무의미함.
그렇게 치면 '나는 동물이다'도 거짓임
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
님이 직접 억지라고 해놓고 '이게 억지인가요?' 하고 물으면 어쩌자는 거임?
ㅈㅅ.. 다시 한번만 고려해주셈
"1번의 반례가 있기때문에 1번이 거짓, 따라서 1번의 부정형이 참"
이게 억지인가요?
참 or 거짓 이라는 이분법적인 현대논리학으로는 절대진리에 다다를 수 없음
원래 세상사가 참이라고 할 수도, 거짓이라 할 수도 없는, 옳고 그름을 논할 수 없는 거임
아니 샹 3천덕 안 주시면 삐져서 바로 신고 조질 거임..
오천덕드림
와 ㅅㅂ 바로 공중제비 조집니다 감사합니다 행님