칼럼[6] : 수학 도형 TIP 모음
게시글 주소: https://orbi.kr/00072631574
[성적 인증]
[칼럼글 모음]
[국어학습총론] 링크 모음
안녕하세요
여섯 번째 공부 이야기
[6] : 수학 도형 문제 TIP 모음
입니다.
오늘은 수학 노트를 엿보는 시간이에요.
참고 링크) 칼럼[1] : 망각과 싸우는 방법 | 오르비
도형 문제는 제가 정말 두려워하던 것 중 하나였어요.
도형을 너무나 자연스럽게 대하는 분들도 있겠지만
저는 그러지 못했었어요.
그래서 내가 부족한 태도를 정리해서 체계화하기로 했고
차근차근 쌓아나간 결과, 만나면 반가운 문제가 되었답니다.
많은 분들이 고민하는 부분임을 알고 있어
공유해 보려 합니다.
표현이 매끄럽지 못하지만
수학 노트를 어떻게 쓰는 것인지에 대한 예시도 될 수 있을 듯하여
거의 노트 그대로를 가져왔습니다.
1. 도형 문제의 기본은 삼각형 찾기이다
삼각형을 찾아나가는 것이 도형 풀이의 근본. 삼각형에 집착하라
변 길이를 요구>해당 변을 포함하는 삼각형
각을 요구>해당 각을 구하기 용이한 삼각형
없으면 만들어라>보조선, 이왕이면 직각을 선호
2. 세 가지가 결정되면 삼각형이 결정된다
각각각인 경우만 아니면 세 가지가 결정된 삼각형은 정복된 것이다
결정된 조건을 표시하며 삼각형을 찾아나가자
제시된 조건 파악>구하는 것 확인>목표 삼각형 설정>연결고리 파악
2+) 네 가지가 결정되면 절단삼각형이 결정된다
시험에 은근히 자주 나오는 것이 절단 삼각형이다
(삼각형 내부에 선분 하나가 있는 모양을 의미합니다)
이 모양은 4가지 요소가 확정되면 결정된다
이또한 하나의 기본 단위로 생각해 놓고 사고 과정을 줄이자
3. 닮음을 놓치지 않는 방법
다음의 요소가 발견되면 닮음을 떠올리고 집착하자
1) 삼각형의 한 변에 대한 평행선
2) 한 각을 공유하는 두 삼각형, 특히 이등변 삼각형
한 각만 더 같으면 바로 닮음 발견
3) 각표시를 하기. 문제 풀이가 이상하게 막히면 무조건 각표시 꼼꼼히 하기
4) 직관적인 의심이 아주 중요하다!!!!! 이건 그냥 닮아보이는데?>검증
4. 사인 법칙을 생각하라
사인법칙 은근 잘 놓침. 코사인은 안 놓치는데.
문제 진행이 안 될 때 사인법칙 한 번 떠올릴 것
이는 변의 길이의 비와 연관됨을 기억할 것
절단삼각형에서 적용 가능함을 기억할 것(중간에 사인 일치각 존재)
5. 원에서 필수로 할 생각 : 중심과 접점의 연결
이건 그냥 하는 거다 무조건.
6. 이등변 삼각형은 직각삼각형 두 개의 합, 또는 내부이등변이다
수선을 내리기. 만약 뭐가 안 보이면 두 밑각 중 하나에서 출발하는
선분 그을 수 없는지 확인할 것
>닮음이 생성될 수 있다
7. 마주보는 두 직각은 원과 연관시킨다
원의 내부에서 직각을 찾을 수 있는 것만 중요한 게 아니라 그 역도 중요하다
직각 두 개가 마주보고 있으면 이건 원에 내접하는 도형이 아닌가 생각
생각 결과 괜찮아보이면>제발 직접 원을 그려라. 헷갈리지 말고
8. 두 개의 미지수를 두려워 말라
가끔 아무리 해도 안 풀리고 복잡해질때 > 내가 가진 정보를 생각
이때 정보가 많이 부족하거나 뭔가 변 길이가 엄청 복잡하게 표현되면?
두 변의 길이를 a,b로 놓을 생각
>이거 하나를 못 해서 못 푼 문제가 있다
9. 각, 표시하지 않으면 보이지 않는다
각은 머리로 하려 하지 말고 직접 표시하자
특히 > 삼각형들이 복잡하게 얽힌 상황에서는 무조건 표시
더한 각, 뺀 각 등도 생각한다. > 닮음과 연결하여 사고한다
10. 특수각과 삼각비는 '상호' 전환이다
30도 > 1/2 는 잘함
근데 변길이 1/2 > 30도 이 생각은 잘 안 됨
역으로도 생각할 수 있어야 한다. 각이 필요할 때.
11. 변의 길이를 바라보는 관점
1) 코사인법칙의 한 변수
2) 그 변을 마주보는 각 정보를 알 수 있으면 사인법칙 생각
3) 삼각형의 결정조건, 아는 삼각형 내의 변으로 만들 수 있나?
4) 그것과 길이가 같은 변이 있나?
5) 닮은 도형 내의 변이랑 비율로 구할 수 있나?
12. 각을 구하는 관점
1) 삼각비로 억지로 만들기 : 직각삼각형의 생성
2) 원주각을 살피기 : 각을 옮겨서 처리할 수 있는지 생각
3) 닮음을 살피기
4) 변 길이 비를 이용하기 > 코사인법칙의 한 변수
5) 사인법칙 이용하기
물론 이게 다는 아닙니다.
더 중요한 많은 것들이 있을 수 있고, 위에 정리된 내용은
제가 도형을 풀면서 막히는 부분들을 해소할 수 있었던
저에게 중요했던 포인트인 것이지요.
여러분은 여러분만의 수학 노트를 만들어가셔야 합니다.
저는 다음 칼럼, 국어학습총론 3. 연계 학습법에서 뵙겠습니다.
좋아요, 팔로우 부탁드립니다... :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
역시 모교야
-
지금 안가람 공통 미적 듣고 있는데 강기원쌤꺼 들어보고싶어서 ㅜ Vod사서 시즌1꺼...
-
문의해요 0
프리패쓰 구매한후에 여기에 댓글 달면 문화상품권 1만원 준다는 이야기 인가요?...
-
그래도 유통기한이 2년밖에 안남았다고 생각하면 좀 서글퍼짐 이 수많은 스킬들과...
-
인생 0
-
그냥 냅다 학교 방문해서 사진2매, 신분증, 응시료들고 신청하면 되는건가요ㅠ...
-
수능 문제도 교수가 낸다길래 다들 깔끔하게 잘 내는 줄 알았는데 지엽에 한 문제는...
-
안타깝지만 정시러야 ㅠ 수1까지 개념, 응용은 된 상태고 수2부터 아예 안했어요....
-
약대도 약술형인가요? 가천대는 의약학 논술로 묶던데, 이과는...
-
작년 김성은 2330모의 올해 시대인재 트러스 오늘 물덕 48점모
-
ㅠㅠ
-
6모 신청할 때 사진 고3수능원서사진으로 해도 되나요? 1
교복입고 찍은 사진이에요..
-
신청 성공 4
-
but high ego inside
-
6모 신청하는 교무실에 작년 담임쌤이랑 친한 선생님 몇분 계셔서 잘 신청하고 왔네요...
-
여기에 188명의 내 친구들이 있는거자나 룰루~~
-
시험장에서 몇개틀리심?
-
하이고야
-
수2 미적으로 하고 싶은데.. 이유 써주실 분 계신가요? 아니면 삼각함수 써주실 수...
-
2025학년도 가톨릭대 논술 기출(의예, 약학 포함) 0
2025학년도 가톨릭대 논술 기출(선행학습평가) : 네이버 블로그
-
짧으면 2분 20초 길면 4분 30초 걸리네 어어 시발;;
-
6모 접수 4
외부생으로 러셀이나 잇올 신청하려고 하는데 러셀은 오늘부터 선착순 접수고 잇올은...
-
SOREM이 5번 중 4번 일어나는 중증이라네요 제 삶은 왜이리 버거운 것일까요
-
6모 신청 질문 0
모교 가서 볼건데 민증, 증사2장, 1.2만원 가져가면 되나요? 아 졸업장은여??
-
우울글 싸지른걸로 놀림당함 ㅠㅠ
-
6모 신청완료 0
일찍 왔는데 대기하는사람 엄청많아서 놀랏음 9모는 많이 일찍 가야할듯
-
현장감은 후자고 긴장감은 전잔데..
-
노래좋음
-
뭘 입어야하지 흐으으
-
현정훈은 특강 대기 잘 안빠지지?40번대인데 못 듣겠지?
-
미용실가서 머리자르는날 ㅋㅋ
-
지금 쳐 일어나서 졸려하는 나를 보고 걍 안함
-
아오ㅅㅂ진짜 2
은행 qr 결제탭 찾다가 놓쳐버림 좀 잘 보이게 해놓으라고 아
-
으히ㅣ
-
생각보다 렉 안걸리고 빨리 되네요
-
간만에 모의고사 보러가서 너무떨려요..
-
다들 힘내보자구요
-
헤헤
-
러셀 6모 0
언제 열리나요??
-
참과 모순의 관계 모순(p and not p)거짓 모순거짓 대우명제는 무모순참...
-
심지어 교무실 들어가서 신청해야됨 ㅠㅠ
-
12000원 현금이라는건가
-
그냥 모평 안봐야겠다
-
잇올에 전화하니까 빨리 마감되어서 주의하라고 하고 이투스 247은 오프 신청에...
-
내년수능을 노리는게 맞을까 이번에 개빡세보이는데
-
현재 하고있는 뉴분감 복습이 끝나면 4의 규칙 시즌1을 푼 후 커넥션이나...
-
6평 접수했다 3
비록 노베상태지만 응시해봐야징~~
-
정국 혼란에 힘 못쓰는 원화…환율 1,500원 가나 2
https://n.news.naver.com/article/215/0001203820...
캬
캬캬ㅑ
이거보고 기하 선택했다
ㅖ?
혹시 쪽지드려도 될까요..?
네