'들어갈 수 있다/없다' 완벽 분석!!
게시글 주소: https://orbi.kr/00072621783
사문에서 논리가 필요한 머리 아픈 문제들이 많지만
그 중에서 대답이 '예/아니요 혹은 참/거짓', 채점 결과가 '1점/0점', '들어갈 수 있다/없다'가 함께 나오는 문제가 가장 머리 아플 겁니다.
기출에서 나오다 보니 사설 모의고사에서도 엄청나게 물어보고 있는 유형이죠.
해당 유형 풀이법의 결론부터 말씀드리자면
"홀짝 논리"를 적용하면 쉽게 풀어낼 수 있습니다.
아무리 3가지의 과정을 거쳐서 총 8가지의 경우의 수가 만들어진다고 하더라도, 이는 부정의 표현이 홀수인 경우와 짝수인 경우로 나뉘어집니다.
여기서 부정의 표현은 '아니요 혹은 거짓', '0점', '들어갈 수 없다'를 의미하고, 반대로 긍정의 표현은 '예 혹은 참', '1점', '들어갈 수 있다'를 의미합니다.
* 25학년도 수능 16번
첫 번째의 경우 '참', '0점'입니다. 따라서 부정의 개수가 1개로 홀수입니다. 그럼 '희소 자원 ~ 본다.'는 A와 달리 B에 해당하지 않는 것입니다. 해당 진술에 대해서는 기능론만 옳다고 보므로 A가 기능론입니다. B는 갈등론입니다.
두 번째의 경우 '거짓'입니다. 따라서 이미 부정의 개수가 1개입니다. ㄷ 선지에서 ㄱ은 0점이라고 했으므로 부정의 개수가 2개가 되었습니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다. ㄹ 선지에서 ㄱ이 1점이라고 가정했고, 들어갈 수 없다가 있기 때문에 부정의 개수는 2개입니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다.
다만, 여기서 주의해야 할 사항이 있습니다.
진위 판단이 '참'인 곳에 'A와 달리 B는 ~'이라는 진술이 0점을 받는다면, '~'에는 A에만 해당하는 것뿐만 아니라 A와 B 모두 해당하는 진술이 들어갈 수도 있음을 알아야 합니다.
이것이 홀짝 논리입니다.
이와 같은 내용들은 파급 사문에 많이 들어가 있으니
이러한 기출 분석을 보고 싶다면, 파급 사문을 강추합니다!!
0 XDK (+10,000)
-
10,000
-
어지간하면 논술 하는거 추천함 작년에 6모 2틀이던 현역학생 시범수업때 ‘난 정시로...
-
메가에 승효T 강의 일주일 찍먹 예정
-
헬스장 2
17일에 끊고 한번 감
-
미적 대신 언매+확통+과탐으로 약대 가능한가요
-
현역이고 3모 88나왔습니다 원래 드릴 풀려했는데 너무 어렵다는 소리를 들어서...
-
ㅈㄱㄴ
-
김종익 찍먹하다가 대가리 깨지고 최적 믿고 갈려고 정법하고 있다에여 근데 국회...
-
볼텍스는 뭐죠 3
생긴 거 보면 그냥 숏컷 mk2 같은데
-
대학 경제학입문 과목 듣는데 딱 수능경제 수준이라 경제 기출 찾아보고 있는데,...
-
학교왔는데 친구들보니까 걍 나보다 성적 높으면서 비틱질 하는 사람 으로밖에 안보임 죽고싶노
-
알텍 진짜 너무 좋다 클래식은 영원하다
-
과외쌤이 우울글쓰면 우리쌤최고야!!! 우땨땨 쌤엄청 훌륭한사람 저 쌤 없으면공부못함...
-
구운몽 경판32장본 (1861)...
-
난 그걸 바랄게 그냥
-
What's up, guys? This is Ryan from Centum...
-
없나요
-
낄낄 1
내일은 1교시 낄낄
-
ㅇㅇ..
-
월요일 0
학교 싫다ㅡㅡ......햄버거 먹고싶노
-
노래좋음
첫번째 댓글의 주인공이 되어보세요.