'들어갈 수 있다/없다' 완벽 분석!!
게시글 주소: https://orbi.kr/00072621783
사문에서 논리가 필요한 머리 아픈 문제들이 많지만
그 중에서 대답이 '예/아니요 혹은 참/거짓', 채점 결과가 '1점/0점', '들어갈 수 있다/없다'가 함께 나오는 문제가 가장 머리 아플 겁니다.
기출에서 나오다 보니 사설 모의고사에서도 엄청나게 물어보고 있는 유형이죠.
해당 유형 풀이법의 결론부터 말씀드리자면
"홀짝 논리"를 적용하면 쉽게 풀어낼 수 있습니다.
아무리 3가지의 과정을 거쳐서 총 8가지의 경우의 수가 만들어진다고 하더라도, 이는 부정의 표현이 홀수인 경우와 짝수인 경우로 나뉘어집니다.
여기서 부정의 표현은 '아니요 혹은 거짓', '0점', '들어갈 수 없다'를 의미하고, 반대로 긍정의 표현은 '예 혹은 참', '1점', '들어갈 수 있다'를 의미합니다.
* 25학년도 수능 16번
첫 번째의 경우 '참', '0점'입니다. 따라서 부정의 개수가 1개로 홀수입니다. 그럼 '희소 자원 ~ 본다.'는 A와 달리 B에 해당하지 않는 것입니다. 해당 진술에 대해서는 기능론만 옳다고 보므로 A가 기능론입니다. B는 갈등론입니다.
두 번째의 경우 '거짓'입니다. 따라서 이미 부정의 개수가 1개입니다. ㄷ 선지에서 ㄱ은 0점이라고 했으므로 부정의 개수가 2개가 되었습니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다. ㄹ 선지에서 ㄱ이 1점이라고 가정했고, 들어갈 수 없다가 있기 때문에 부정의 개수는 2개입니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다.
다만, 여기서 주의해야 할 사항이 있습니다.
진위 판단이 '참'인 곳에 'A와 달리 B는 ~'이라는 진술이 0점을 받는다면, '~'에는 A에만 해당하는 것뿐만 아니라 A와 B 모두 해당하는 진술이 들어갈 수도 있음을 알아야 합니다.
이것이 홀짝 논리입니다.
이와 같은 내용들은 파급 사문에 많이 들어가 있으니
이러한 기출 분석을 보고 싶다면, 파급 사문을 강추합니다!!
0 XDK (+10,000)
-
10,000
-
안보이지 구글로 들어오면 보이는데
-
강아지 하실 분?
-
으흐흐 벌레랑 3판만 하실분
-
엄…기은 0
오늘부로 엄기은지지를 철회한다 오늘부터 지지관계에서 벗어나 엄기은과 나는 한몸으로...
-
감사합니다
-
휴식 끝 2
다시 1주일 동안 달려야지
-
잘래그냥 4
잘래그냥 잘자요!!! 이 기요미 들아!!!!
-
6모 수학ㄱ? 8
같은학원에서 접수하고 점심시간에 46문제 완답여부로 승패결정
-
여러분 잘자욥♡ 4
내가 항상 응원하는거 알지♡
-
[첫 칼럼] 합격자가 말아주는 고려대 논술 사고과정!!! 8
안녕하십니까 수리논술러 fr0mhell 입니다! 이번 칼럼에는 작년에 처음 시행한...
-
한국시리즈 야구장에서 5회부터 실모 풀면 됨 ㅇㅇ 그 성적이 수능장 환경변수 고려한 찐 실모임
-
뭔가 에스컬레이드가 더 신뢰감이 감 미적 엑셀트러스 공통 엑셀 산 거 다 풀고...
-
2025년 3월 3주차 韓日美全 음악 차트 TOP10 (+3월 2주차 주간VOCAL Character 랭킹) 6
2025년 3월 2주차 차트: https://orbi.kr/00072602243...
-
3더프에서 남는 사탐 시험지 중고마켓에 팔아도 문제없죠? 0
궁금하네요
-
학원 추천 1
독재 학원처럼 자습 위주인데, 모르는 거 질문할 수 있는 질답 조교 계신 곳 있나요?
-
왤케 볼게없ㄴ노
-
2025 수능에 비해 평이하다고 봅니당 전반적으로 역학이 무난하네요. 준킬러인...
-
수학 N제 추천 5
1. 지인선 N제 22번 15번이 좀 어렵긴 한데……… 풀고 난 후 쾌감 지림...
-
기파급 하고있는데 가독성이 좋아서그런지 영상보다 인강보다 더 이해가 잘됨.....
-
진짜 자야지 11
모두 잘자
-
한종철 생1 기출 문제집 좋나요?
-
ㅈㄱㄴ
-
힘들다 해보자
-
이과분들
-
식단 ㅇㅈ 2
운동 꾸준히 할거임 시발 감기만 빨리 낫면 좋겠다
-
토욜날에 혼자 집에서 롤하다가 정병걸려서 오르비도 안하고 혼자 기타치다가 뻗었는데...
-
자기가 못생각하니 저 풀이의 실전성은 별로다 이거 곱씹어볼수록 너무 웃긴말같음...
-
파데+쉐이딩은 과하나?
-
잇올갈까 러셀갈까 일단 모교는 절대 안감ㅎ
-
어그로 정말정말 죄송합니다…저 정말 간절하니 한번만 글 읽어주십시오 ㅠㅠ...
-
그거 그냥 *******이잖아 뭐하러 하는 거지 할거면 ******던가
-
양 적은 사탐 뭐 있음? 사문? 생윤?
-
야식사러편의점가기 11
뇸뇸뇸
-
괴수님 문사님 제발 답변해주세요
-
개초딩잼민이새끼라서 음 맞는말이야
-
사탐 기출분석 2
강사의 기출 커리를 타면 따로 마더텅이나 자이 풀 필요 없음??
-
ㅈㄱㄴ
-
하루에 19시간은 걍 구라같은데 랭킹보니까
-
맞맞맞팔팔팔구구구
-
삼반수 가자! 1
실패하더라도 한번더봐야 미련이 안남을듯
-
아는 선생님이 없다
-
나는 내가 게이라는 사실을 죽어도 못말할것 같음
-
잠깐 안들어오고 앱도 삭제했는데 드라마틱하게 공부시간이 느는건 없었음 생각해보니까...
-
절대 오르비 접속이 뜸해진 참에 도망가려는데 아님 ㅇㅇ 절대 오르비보다...
-
ㅍㅅㅌ 일반고 내신 2.3인데 모고는 지금까지 한번빼고 올 1이고 이번 3모 국수영...
-
일단 난 개념베스트 강좌는 발췌독으로 들음 그리고 CSAT 완강, DEEP 강의...
-
이번3모 화작80(화작 2틀) 미적1컷 영어3 탐구 1 3인데 탐구 3등급인건 아직...
첫번째 댓글의 주인공이 되어보세요.