'들어갈 수 있다/없다' 완벽 분석!!
게시글 주소: https://orbi.kr/00072621783
사문에서 논리가 필요한 머리 아픈 문제들이 많지만
그 중에서 대답이 '예/아니요 혹은 참/거짓', 채점 결과가 '1점/0점', '들어갈 수 있다/없다'가 함께 나오는 문제가 가장 머리 아플 겁니다.
기출에서 나오다 보니 사설 모의고사에서도 엄청나게 물어보고 있는 유형이죠.
해당 유형 풀이법의 결론부터 말씀드리자면
"홀짝 논리"를 적용하면 쉽게 풀어낼 수 있습니다.
아무리 3가지의 과정을 거쳐서 총 8가지의 경우의 수가 만들어진다고 하더라도, 이는 부정의 표현이 홀수인 경우와 짝수인 경우로 나뉘어집니다.
여기서 부정의 표현은 '아니요 혹은 거짓', '0점', '들어갈 수 없다'를 의미하고, 반대로 긍정의 표현은 '예 혹은 참', '1점', '들어갈 수 있다'를 의미합니다.
* 25학년도 수능 16번
첫 번째의 경우 '참', '0점'입니다. 따라서 부정의 개수가 1개로 홀수입니다. 그럼 '희소 자원 ~ 본다.'는 A와 달리 B에 해당하지 않는 것입니다. 해당 진술에 대해서는 기능론만 옳다고 보므로 A가 기능론입니다. B는 갈등론입니다.
두 번째의 경우 '거짓'입니다. 따라서 이미 부정의 개수가 1개입니다. ㄷ 선지에서 ㄱ은 0점이라고 했으므로 부정의 개수가 2개가 되었습니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다. ㄹ 선지에서 ㄱ이 1점이라고 가정했고, 들어갈 수 없다가 있기 때문에 부정의 개수는 2개입니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다.
다만, 여기서 주의해야 할 사항이 있습니다.
진위 판단이 '참'인 곳에 'A와 달리 B는 ~'이라는 진술이 0점을 받는다면, '~'에는 A에만 해당하는 것뿐만 아니라 A와 B 모두 해당하는 진술이 들어갈 수도 있음을 알아야 합니다.
이것이 홀짝 논리입니다.
이와 같은 내용들은 파급 사문에 많이 들어가 있으니
이러한 기출 분석을 보고 싶다면, 파급 사문을 강추합니다!!
0 XDK (+10,000)
-
10,000
-
프사바꿈 5
-
사탐런때문에 공대 못써서 자유전공-전전 테크 타려고 했는데 막상 와보니까 과생활에서...
-
단순히 내가 공부를 못하는데 의대를 노린다던가 하는 것을 떠나서 내가 밑천이 없는데...
-
이거 전국 모든 잇올 다 합친 석차인 건가요 이게 맞다면 더프 본 잇올러만 전국에...
-
난 n제 추천해줄때 16
무조건 설맞이 1순위로 추천해주는데 물론 저거 풀만한 등급대면 ㅇㅇ
-
1. 실수 줄이는 법(부제 : 사람은 항상 같은 실수를 반복한다) 2....
-
아이디어 수강후 기생집 중인데 실전개념이 좀 부족한거같아서 뉴런 들으려고 함 근데...
-
플래너쓰고 좀 거시적인 계획은 잡아야겠어
-
현역 고3인데, 학교에서 엄기은 쌤 수업 듣는 사람이 저밖에 없는 게 너무 아쉬워서...
-
걍 바꾸지 말까
-
음음
-
갑자기 언어능력 포텐터져서 문학 100% 수렴에 독서도 10분 남기고 2틀 정도가 되는거임
-
수일만 대충 어떤내용인지 궁금합니다
-
대통령, 국회의원, 광역 자치 단체장, 광역 의회 비례 대표 의원, 교육감에 대한...
-
푸 리 나
-
금방 마감되나요? 9시에 방문접수 10명 받던데 9시에 가면 줄 쫙 서있으려나 강남권은아님
-
올해도 가면 이새끼 뭐지 싶겠지.... 근처 학원가야하나
-
아 과제하기싫다 4
교양 필수 채우겠다고 아무거나 잡지 마십쇼...
-
낄 자리가 없음
-
10년 넘게 참아왔는데 군대 다녀오고 나서도 똑같이 이러고 있으면 나는 어떻게 해야 하는거야,,,
-
국어 1-2 수학 4-5 영어 3 사탐 1-2 입니다. 염치없지만 연대 목표 로...
-
지금까지도 컨구매 창 안닫음 이게 뭔뜻이면 1회씩만 판다면 그때 구매 못한 컨을...
-
팔이 너무 저려 4
으아ㅏㄱ 우
-
이미지 T 세젤쉬+미친기분후-----> 한석원T알텍으로 넘어가도 되나요?? 1
계속 이미지t 갈지 한석원t로 갈지 고민입니다..ㅠㅠ
-
귀칼보다 이게 더 재밌네
-
일 그만 잡을거임 이제..
-
3화까지 봤는데 나름 잔잔해서 볼맛은 나는데 스토리 진행이 안되서 이거 후반가도 재밌음?
-
잘자라 2
나도 잔다
-
어떰?
-
갑자기 Botzi더락이 보고싶어지네요
-
저격합니다 10
사람 프사보고 x알이 뭐에요 x알이
-
현정훈 현강 1
남여 비율 어느정도임?
-
가슴이 웅장해지네요
-
역학 기출 2번 돌렸는데 3모 때 하나도 안풀리고 머리가 멍해짐.... 그래서 지구를 하기로 함
-
해명합니다. 6
미용실 갈 때마다 머리숱 많다는 소리 듣습니다.
-
ㅇㅇ https://orbi.kr/00072620922
-
나 논술안해봄
-
학고반수 하려는데 지금 계속 학교 안가는중인데 집으로 언제 우편 오나요 1학기가 끝나고 거는건가요?
-
아가 자야지 0
ㅋㅋ
-
세 과목이 묘하게 흐름이 비슷함 선택자 수 각각 영역에서 꼴찌 기출이 중요함(어차피...
-
고지자기 개그튼룐
-
맛이 달라진 것 같음
-
이거 이제 그냥 쓰면 손 베일거같은데
-
무모한 도전이었던거같아..
-
솔텍n제 0
솔텍 할거면 필수임? 아직 기출 못끝내서 기출하고 솔텍 본교재만 하려고 하는데 ㄱㅊ?
-
지금 시즌은 볼사람이 없겠죠? 전에는 많이 본거같은데
-
여긴 아직 안 달라졌구나,,
-
아무리 눌러도 안 나와서 옮겨 담을라하는데 ㄹㅇ 마땅한데가 없음....반찬통?
첫번째 댓글의 주인공이 되어보세요.