'들어갈 수 있다/없다' 완벽 분석!!
게시글 주소: https://orbi.kr/00072621783
사문에서 논리가 필요한 머리 아픈 문제들이 많지만
그 중에서 대답이 '예/아니요 혹은 참/거짓', 채점 결과가 '1점/0점', '들어갈 수 있다/없다'가 함께 나오는 문제가 가장 머리 아플 겁니다.
기출에서 나오다 보니 사설 모의고사에서도 엄청나게 물어보고 있는 유형이죠.
해당 유형 풀이법의 결론부터 말씀드리자면
"홀짝 논리"를 적용하면 쉽게 풀어낼 수 있습니다.
아무리 3가지의 과정을 거쳐서 총 8가지의 경우의 수가 만들어진다고 하더라도, 이는 부정의 표현이 홀수인 경우와 짝수인 경우로 나뉘어집니다.
여기서 부정의 표현은 '아니요 혹은 거짓', '0점', '들어갈 수 없다'를 의미하고, 반대로 긍정의 표현은 '예 혹은 참', '1점', '들어갈 수 있다'를 의미합니다.
* 25학년도 수능 16번
첫 번째의 경우 '참', '0점'입니다. 따라서 부정의 개수가 1개로 홀수입니다. 그럼 '희소 자원 ~ 본다.'는 A와 달리 B에 해당하지 않는 것입니다. 해당 진술에 대해서는 기능론만 옳다고 보므로 A가 기능론입니다. B는 갈등론입니다.
두 번째의 경우 '거짓'입니다. 따라서 이미 부정의 개수가 1개입니다. ㄷ 선지에서 ㄱ은 0점이라고 했으므로 부정의 개수가 2개가 되었습니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다. ㄹ 선지에서 ㄱ이 1점이라고 가정했고, 들어갈 수 없다가 있기 때문에 부정의 개수는 2개입니다. 따라서 (가)에는 B와 달리 A에만 해당하는 문장이 들어가면 됩니다.
다만, 여기서 주의해야 할 사항이 있습니다.
진위 판단이 '참'인 곳에 'A와 달리 B는 ~'이라는 진술이 0점을 받는다면, '~'에는 A에만 해당하는 것뿐만 아니라 A와 B 모두 해당하는 진술이 들어갈 수도 있음을 알아야 합니다.
이것이 홀짝 논리입니다.
이와 같은 내용들은 파급 사문에 많이 들어가 있으니
이러한 기출 분석을 보고 싶다면, 파급 사문을 강추합니다!!
0 XDK (+10,000)
-
10,000
-
현역입니다 메가패스 사는 목적은 사문, 경제 두 개 들으려구 사는거에용 메가패스...
-
칼럼) 잘하고 싶다면 천천히 걸어가라. + 등급별 공부커리 15
최근 아마 3덮 3모가 끝나고 자신의 점수에 충격을 받은 학생들이 매우 많을...
-
얼버기 1
-
[스포] 25년 3월 고3 학평 국어 독서 사회·문화 지문 복습시 참조 1
안녕하세요, 디시 수갤·빡갤 등지에서 활동하는 무명의 국어 강사입니다. 오늘은 지난...
-
지금 풀고 있는데 문항들이 너무 난해한데 제 실력부족일까요 문해전 드릴드 끝내고...
-
리플 더 살까 0
흠...
-
18년도 이후는 풀만 하지만 그 전까지의 기출은 유형이 좀 많이 다르고 이미...
-
오늘은 저녁먹기 전까지 했는데 집중이 잘 됐네용
-
저는 웬만하면 과외비를 안올림 한 예시로 어떤 한 학생이랑 고1부터 지금 고3까지...
-
반여론이 00이는 잘못한거 없어 쟤는 착하자나 이런류였는데,,,,,,
-
? 연구 주제: ? "지방 출신 N수생의 강남 재수 사교육 참여에 대한 질적...
-
이게뭐지 10
겁도없네 이사람은
첫번째 댓글의 주인공이 되어보세요.