3모 수학 14번 설문 부탁드립니다 :)
게시글 주소: https://orbi.kr/00072608259
여기서 정적분 식을 변형하여 꼴을 만들고,
접선의 방정식을 유도해서 풀었는데요,
제 주위에서는 의견이 갈리더라고요.
저는 조금 발상적이라고 (2번) 생각하는데요,
오르비언 분들은 어떻게 생각하시나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일단 답은 5번
-
한 나라의 우두머리엿다가 파면 당해 내려오는 윤석열의 내면세계를 공감할 수 잇음
-
얼버기 0
ㅇ
-
포카칩n제 갖고 가면 좋음 한권에 수1 수2 선택 같이 있어서 한권으로 전과목 할...
-
라.. . 작년에 이뮨에 실린 이상 기체 상태 방정식 옛날에 화2 깔짝거린 걸로...
-
에휴다노 ㅅㅂ
-
정답이 없는 분야에 대해 말 길어지면 결국 싸움남 ㅋㅋ 가족들이랑도 안함
-
평소에 안 좋아해서 잘 안써먹었는데 영어 빈칸 밑줄의미 이랑 국어 운문 에서...
-
"읽으시었다" 에 앞부분이 "었다"였을수도 있지않음??? 5
"읽으시었다"에 뒤부분이 "었다" 앞부분이 "읽으"쪽인거 뭐 국어에서 그렇게...
-
이재명, 가천대 '이름도 모르는 대학' 발언 논란에 공식 사과 지난 4일 이재명...
-
아 임기가 없어지는구나!
-
평가원장도 그대로고 그분은 24수능 때도 자기가 뭔소리하는지 모르고...
-
보통 일단 그냥 넘기나? 아니면 다른 강의나 구글에서 찾아보고 그럼?
-
24수능 꽤 괜찮다 생각했는데 비상식적인 독서 난이도하락 눈알굴리기 테스트 문학...
-
전국민에게싸이버거25개를뿌리도록하겠읍니다!!
-
대한민국 경제 힐팩 섭취 완료
-
잇올 6모 2
잇올 6모 신청해서 1시에 결과 나온다는 창까지 봤는데 지금 들어가서 결과 보니까...
-
강기원 어싸에 매일학습 무등비/삼도극/확률통계 5문항씩 들어있었고
별 차이 없는거같긴 해요
1번이랑 2번 말씀하시는 건가요?
이게 발상이면
점심메뉴는 어캐 고르는겨
점심메뉴 고르기는 극악의 발상적인 문제 아닌가요?
그럼 그걸 어캐풀어요?
접선의방정식 안쓰는 풀이가 있는지 저도 고민 중이에요
지금으로썬 접선의방정식 안쓰는 풀이는 못 찾았습니다
접방이 아니라 미분계수로 처리해도 되나 흠
양변 t-a로 나누는 거 말씀이신가요?
적분 꼴이라 t-a로 나눌 수 없습니다 ㅠㅠ
부등식 한쪽으로 모는게 발상적이라고 생각하진 않는 입장이긴 해요
그부분이 의견이 많이 갈리더라고요
저는 풀때 양변 식변형을 생각 못하고 그냥 있은 그대로 해석해서 풀었는데 해설보니까 접선의 방정식형태로 푸는게 더 쉬워보이더라고요.. 처음풀때 이걸 발견 못해서 그냥 좌변은 f(x)-f(a)=g(x)라는 x=a에서 함수값이 0인 4차 방정식과 우변은 기울기가 f'(a)이고 x=a에서 함수값이 0인 1차식을 비교해서 x=a에서 함수값이 0으로 같고 기울기도 같은거 이용해서 어찌 저찌 풀어서 맞추긴했는데 처음풀때 식변형 생각못하고 좀 더 어렵게 풀어서 시간 좀 날린거 반성중입니다...
저도 한번 시도해봤는데 많이 꼬이더라고요 ㅠㅠ
다음에 더 잘보시면 됩니다!
저는 그냥 한쪽으로 다몰고 접방과 f의 차함수로 바라보고 부정적분함수가 증가함수다라고 풀었음요
한쪽으로 다 몰면 접방인게 안보일수가 없음
저는 처음에 문제 봤을 때, 부등식 좌변 f(a)만 우변으로 이항했거든요.
그 다음 f(x)와 접선의방정식으로 나눠서 생각했습니다.
아예 한쪽으로 다 몰아버리면 접선의방정식이라는 생각이 떠오르기가 쉽겠네요.
좋은 의견 감사합니다 :)