[수학자료] 3모 공통 손풀이+총평
게시글 주소: https://orbi.kr/00072607181
2025년 고3 3월 학력평가 풀이
생각보다 쉽지 않았던 문제였습니다
S_n에서 n이 몇이냐에 따라 일반항이 달라지기에
그 점을 활용해서 모순이 일어나는 부분들을 제외하고
착실히 따라가서 n을 찾으면 되는 문제였습니다
0과 -2a의 대소관계만 찾아서 풀어주면 되는 문제였습니다
10번대에서는 가장 쉽게 나온것 같습니다
늘상 나오는 정적분 문제입니다
A의 좌표를 찾고, 주어진 부분 넓이를 어떻게 계산할지 고민하고, 삼각형을 활용하면 되겠다만 발견하면 쉽게 풀립니다
삼각함수문제입니다
sin함수가 a값의 부호에 따라 모양이 달라지기에
이 점을 활용해 a값의 부호에 따라 케이스 분류만하면
간단하게 풀렸습니다
부정적분 문제입니다
박스안의 조건해석이 관건이었던 문제로
먼저 식을 정리해서 접선과의 관계식으로 만들고
이후 그래프의 개형을 추론하면 되는 문제였지만
보통 이런식의 문제는 특수한 상황이 답이되는 경우가 많고
아마 문제를 많이 풀어본 n수생들은 보자마자 그래프 개형이 나왔을 수 있었을 거라 생각합니다
개인적인 의견으로는 이런식의 그래프 개형추론은
평가원에서 자제하는 중이기에
그리 좋은 문제는 아니었다고 생각합니다
그럼에도 접선과의 관계식으로 생각+항상 적분한 값이 양수라는 조건의 의미 파악은 중요했습니다
15번은 실수 전체집합에서 실수 전체집합으로 일대일 대응이라는 다소 특이한 발문이 있던 문제였습니다
정의역과 치역이 실수 전체이기에 p가 0이 될 수 밖에 없다는 부분에서 시작하여 이후 q와 a를 특정하면 됐습니다
로그함수의 점근선에 대해 주의깊게 생각해보며 문제를 풀었다면 아마 보다 쉽게 풀릴수 있었을거 같습니다
단순하게 계산만 하면 되는 문제였습니다
미지수가 2개이고 코사인 법칙을 통해 식을 2개 세울수 있다는 것을 바로 판단하여서 바로 풀수 있어야했습니다
아마 공통중에서는 가장 난이도가 높았던 문항입니다
a_5값을 뽑아내고 나서 이후 a_4의 범위를 확인했습니다
이후 간략한 케이스 분류로 답을 낼 수 있었습니다
중요했던 포인트는 a_1만 자연수이고 나머지의 자연수 여부는 모른다는 부분이었습니다
그렇기에 a_1의 값이 범위형태로 나와서 특이하게 풀리는 문제였습니다
22번은 생각보다 어렵지는 않았던 문제였습니다
0과 2에서 미분이 가능하다는 부분에서 시작하여
처음 0에서 f(x)의 절댓값을 케이스를 나누어 벗겨냈어야 했습니다. 이후 2에서 미분가능해지게 만들기 위해서는
우미분계수와 좌미분계수가 같아져야 한다는 것을 이용하면
수월하게 답이 나왔습니다
전체적으로 작년수능기조를 따랐던 시험이라는 생각이듭니다. 수1 수열에서 가장 난이도 높은 문제가 출제되고
공통 객관식을 쉽게 출제하는등 작년 수능기조를 따라갈려는 노력이 보였습니다. 하지만 그와 동시에 선택 미적은
꽤나 높은 난도로 출제해서 수험생들 입장에서 쉽지 않았을거라는 생각도 듭니다
첨부 파일로 글에서 설명한 문제를 포함한 22번까지의 전 문항에 대한 손풀이를 올려두었으니 학습에 도움이 되었으면 합니다
3월 모의고사를 못봤다고 너무 좌절하지 마시고
잘봤다고 너무 자만하지 마시고
틀렸던 부분, 부족한 부분 인지하여 수능때까지 다들 열심히 하시길 기원합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[수학자료]22-25학년도 평가원 [기하] 전문항 모음!! 13
선택과목을 기하로 바꿈으로써 저번 수1에 이어서 기하 평가원 기출도 전부...
-
개별 질문을 주시면 언제든지 답변드립니다. 익명화하여 해당 내용들을 통해 칼럼으로...
-
여자도 마찬가지로 잘생긴애한테 못 다가가는거겠지
-
이신혁리바이벌 0
과제에 리바이벌있던데 선택이라서 구매안햇거든요.,, 꼭사야할까요
-
한의사, 약사, 한약사로 취업시 불이익이 있을까요?
-
스타벅스는 2
맥북있어야 입장가능하대서 투썸으로가기로햇서
-
아직 안왔는데 이상한거 아니죠?
-
약간 스토쿠 푸는 느낌임
-
반수안합니다. 4
사유:공부를 너무못해서
-
전형이 좀 크게 바뀌는 건 절평 첫해인 18학년도 이후 거의 8년만인듯 한데 1....
-
실시간으로 게임처럼 즐기며 친구와 대결하면서 공부할 수 있음 상대방을 견제하기 위해...
-
시원시원하게 풀리는 맛도 없고 문제는 더럽게 많고 개어이없이 틀릴 때도 많고 도저히...
-
'순대 6조각에 2만5000원?' 제주 벚꽃축제 바가지 논란 8
제주에 봄꽃이 만발하면서 제주시 전농로와 애월읍 장전리 등 벚꽃 명소에서는 내일까지...
-
아니 이럴리가 없는데 뭐야
-
애니 추천 0
크라이시스 융 잔인하거나 노출 많은거 못보면 보자말것
-
시발 좆됐다
-
사람은 결국 모두 혼자고 아무리 가까이 붙어 있어도 하나는 될 수 없으니까......
-
확통 전범위인가요?
-
오랜만에 이륙하는구만
-
https://orbi.kr/00072650760/pc%EB%B0%A9%EC%97%9...
-
5모 6
국어 1컷 72 수학 1컷 71 영어 1등급 0.03퍼 물1 1컷 34 화1 1컷...
-
누구? 메인글 뭐노
-
전 칼럼 보이면 그게 도움이 되던 안되던 좋아요 누름 4
열심히 썼는데 이륙 안되면 슬플꺼아니야..
-
벌써일년 4
-
학교마다 다른가
-
그 날도 오늘처럼 꽃샘추위가 기승을 부리던 날이었지. 'CAU' 야무지게 박힌...
-
ㅇㄱㅈㅉㅇㅇ?
-
흠.
-
허허…
-
저는 ADHD라는 지병이 있고 아직 약 안정화가 안 돼서 브레인포그온건데 왜그게핑계죠 ㅈㄴ우울
-
제주도에 사는데 나 만나러 비행기타고 와줄사람
-
드릴마렵네
-
------------------(기만 방지 선)-------------------...
-
마더텅이랑 병행을 해야하나요?아님 그냥 그 문제집만 풀어도 될까요?양이 되게 많아서...
-
오 수능1112로 교대를? 교대에 사명감이 있었나 뭐 그런갑다 치자 근데 8년차라고...
-
그래도 아에 발상조차 하지 못한 채 틀린 것보단 나으니 성장 가능성이 다분하네,...
-
잇올 홍보대사 3
이정도면 장학금 줘라
-
수특 난이도랑 비슷한가요???? 쉬운거 먼저 풀고싶은뎅
-
바람을 세로질러 0
날아오르는기분
-
둘 중에 무슨 문제가 더 쉽나요?
-
공통25 + 선택미적분5 체제여서 선택미적분 난이도 올릴 이유가 없었고 공통 수2...
-
이다지 이미지 1
솔직히 자매라고 해도 믿을 듯 둘이 닮앗는데 이름도 비슷함
-
건강 이슈 해결 완료
-
국어랑 화학 하러간다
-
왜이러지ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ 원래 주말에 10시간씩 공부했는데ㅡ요즘엔 2시간도ㅜ겨우채움
-
생2 적합성 테스트용 기출 변형 문제 이게 원본 문제 220911...
-
고3 학종 1
제가 1학년 때부터 뇌과학에 관심을 가지고 2학년 때 뇌과학 관련해서 탐구를...
-
토요일 저녁 11시
-
오르비에서 해소좀 해볼까 ㅎㅎ
Great

캬 부엉이님 손글씨는 언제 봐도 멋지네요22번 f(0)>0 f'(0)=0이고 0<x<2에서 |f|가 미분가능해서 x=2에서 케이스 나눌 필요가 없이 그냥 f로 나옴
감사합니다

감사합니다15번에서 왜 p가 0이 되어야하나요?
실수 전체집합에서 실수전체집합으로 일대일대응되기 때문에 음의 무한대를 치역으로 가지는 a+log2x를 기준으로 생각하면
p가 0보다 클경우 음의 무한대를 치역으로 가지지 않고 p가 0보다 작을경우 함수가 정의되지 않는 구간이 나타나게 되요(log2x의 정의역은 x>0이기 때문에)
아 치역에 이미 실수전체집합이 있디고 전제했기때문에 그 조건을 충족시키기 위해 p가 0이여야 하는거군요!
일대일대응이라는 것에만 집중해서 치역이 실수전체라는 중요한 조건을 못봤네요
답변감사합니당