2026年 3月 기하 28, 29, 30 Solution
게시글 주소: https://orbi.kr/00072601605
3월 26일에 시행된 25학년도 3월 전국연합학력평가 수학의 난이도는 작년 수능과 비슷한 편으로, 문항을 해결하기 위한 풀이방향을 정하기 까다롭거나(10번), 조건 해석이 어려운 문항들(15번)로 난이도를 유지하였지만 출제범위가 좁아 계산량이 많은 문항(30번), 하나라도 놓치면 틀리는 꼼꼼함을 요구하는 문항 (21번) 등에서 끈기와 집중력 또한 요구했던 시험지었습니다.
다만, 기하 문항은 공통 영역에 비해 상당히 수월한 편으로 28번, 29번의 경우 간단한 기하상황과 이차곡선의 정의만으로 해결가능했으며, 30번의 경우 포물선에서 초점을 관통하는 직선이 주어진 상황에서 사용 가능한 식 (1/p = 1/a + 1/b)를 이용하거나 삼각비를 이용한 기하적 풀이 두 방향을 모두 열어두었습니다. 발상적인 풀이를 요구하지 않기에 공통 영역에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
28. #포물선의 정의요소 #이차곡선의 "방정식" 해석기하 관점
1. 이차곡선의 정의요소를 이용하기 -> 두 포물선과 준선, 초점을 표기합니다.
2. 모르는 것은 미지수로 두기 -> P, Q의 x좌표를 미지수로 세팅하고, 1번의 이차곡선의 정의요소와 연결지어 사고합니다.
3. 주어진 길이 이용하기 -> 둘레의 길이가 41이라는 조건을 이용해 x1+x2=16을 얻습니다.
4. 이차곡선의 "방정식" -> P, Q의 y좌표가 a로 동일함을 이용하기 위해 좌표를 식에 대입하여 x1=16/3, a=8을 얻습니다.
5. 결론부 사다리꼴의 넓이를 구합니다.
29. #이차곡선의 정의요소 #삼각비
30. #이차곡선의 정의요소 #특수각의 등장 #초점을 관통하는 직선
#29
1. 쌍곡선의 방정식에서 초점의 좌표와 P의 좌표를 역대입을 통해 P(3,5/2)를 얻습니다.
2. 삼각비의 등장에 주목하기 -> F'F=6, PF=5/2 에서 13 : 12 : 5 직각삼각형을 연상합니다.
3. 삼각비 이용하기 -> 각 FPF'=세타로 두고, cos세타= 5/13을 얻습니다.
4. 주어진 기하관계에 주목하기 + 당위적인 보조선 긋기 -> 삼각형 PP'Q가 이등변삼각형이므로, P'H 수직이등분선을 그을 수 있고, 삼각비를 이용해 PQ의 길이를 구합니다.
5. 타원의 정의요소 이용하기 -> 타원의 장축의 길이는 타원 위의 점에서 두 초점까지 이르는 거리의 합과 같으므로, PQ+P'Q가 됨을 이용합니다.
#30
1. 이차곡선의 정의요소 이용하기 -> 주어진 기하상황을 간략하게 그려봅니다. 이떄, 포물선의 초점을 관통하는 직선이 등장했음에 주목해 봅니다.
2. 특수각의 등장에 주목하기 -> 60'의 등장은, 삼각비 혹은 코사인 법칙을 이용할 당위성을 제공해 줍니다. 타원의 정의요소를 이용하여 PF=s, PF' = 10-s로 세팅 후 코사인 법칙을 이용해 s=3을 얻습니다.
3. P가 F, Q를 3:5로 내분하는 점임을 파악합니다. ->P(3루트3/2,5/2)를 얻습니다.
4. 포물선의 정의요소를 이용하기 -> 준선의 방정식 x=3루트3/2 -5를 얻습니다.
5. 초점을 관통하는 직선의 등장 ->포물선 I식 (1/p = 1/a + 1/b)를 이용합니다. l=20루트3 + 35를 얻습니다.
6. 결론부의 길이를 구합니다.
총평으로 기하에서 불편함을 준 문항은 30번으로, 계산량을 주어 까다롭다고 느낀 문항이었습니다. 해설지와 같이 60' 특수각을 이용해 기하적으로 접근하는 풀이 역시 배워가면 좋을 것 같습니다. 역시 계산을 요구하기에 꼼꼼함을 요구한 문항이었습니다.
이번 3월 모의고사는 출제범위가 제한되어 있는 만큼, 충분한 내용을 묻지 못하였지만 그래도 이차곡선의 연마 정도를 측정할 수 있는 문항들로 구성되었습니다. 이차곡선의 정의요소 주제를 메인으로 포물선과 타원, 쌍곡선에 녹여낸 문항들로, 평가원, 교/사관 기출에서 벗어나지 않는 전형적인 문항들로 구성되었습니다.
오늘 하루도 모두들 수고하셨습니다 :)
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+20,000)
-
10,000
-
10,000
-
??
-
생2 코돈 3
코돈 풀때 전사 ㅈ형 가닥 mRNA 로 바꿔서 푸는게 더 좋음?
-
6/3일날 1
아플 예정(유고결석은 안되니 질병결석을..~~~)
-
슬슬 머리가 아파오는군요
-
신청해야하는데 귀찮네요;;;;;;;; 그래도 오늘 끝내야겠다
-
6모 신청 관련 3
혹시 서울에 위치한 학원 중 현재 6모 외부생 신청 가능한 곳 있을까요..?
-
한완기 수분감 0
뉴런수1,2를 5월 안으로 후딱 끝내고 기출 1, 2권 벅벅풀다 엔제가려합니다,,,...
-
생2 질문 10
삼투일어나서 터질거같을때 세포외배출로 막 집안살림 갖다버리면서 농도 낮추면...
-
부르나요..? 어떤 분이 손 들고 대답해야 한다는데 맞나요..?
-
4규 시즌 1 15문제 드릴드2 10문제씩 풀고있어요, 풀이 시간은 3시간정도...
-
아톰 사이트 실환가 20
뭔가 한참 봤네
-
걍 한번씩 싹 다 대충 훑어서 기출 풀어보고 제일 나랑 맞는걸로 해봐야되나
-
오빠한테 소고기 얻어먹을 건동홍 이상 여대생은 쪽지 줘. ^^
-
고딩이 아니여서
-
기숙사 생활했었어서 모교까지 거리가 멀어서 그런데 집 주변 학교에서는 6모 못보는건가요??
-
그냥 화끈하게 사탐 2개 지를까 고민도 되는데 지구 버리긴 아깝고 참 근데 수능날에...
-
ㄱㅁ하나함 0
6모 신청한다고 오늘 개많이 걸었음 피곤하다
-
수학 개념강의를 듣기전에 먼저 개념서에 있는 개념설명을 읽고 난뒤 강의를 듣는게...
-
여러분은 하루에 몇걸음정도 걷는 게 적당하다고 생각하시나요 23
천보 이상만 걸으면 적절한 거 아닐까요
-
평가원이 정의하는 킬러는 사교육의 스킬이나 방법론을 0
반복해서 쉽게 풀 수 있는 문항들임 킬러는 '난이도'의 문제가 아니라고 못박았음
-
독재 다니는데 여기서..? 여기선 달에 한 번씩 사설봐서 너무 익숙해질거...
-
사랑해 gpt쨩
-
학교에 미리 연락 안하고 그냥 바로 행정실 가셨나요.
-
3수이상 분들 6모 학원이랑 모교 중 어디가 나아요 7
우리 학원에서 응시된대서 학원은 집에서 5분 거리긴함 근데 현장감 때문에...
-
속보) 화성 태행산 정상에 폐오일 뿌린 60대 자수…“텐트치는 캠핑족에 화나서” 3
경기 화성시 비봉면 태행산 정상 부근에 폐오일을 뿌린 60대가 경찰에...
-
여기 왜 오처넌이냐 씨빨
-
젭알
-
진짜 충격적이다
-
죽는다죽어
-
걍 미분해보니까 (a.f(a)) 접선꼴 나오길래 차함수 처리해서 풀었는데 이래도...
-
이번 3모 수학 6
10번 틀리고 22번 맞았는데 은근 이런사람 많을거같은데ㅜ22번은 n제에서 많이...
-
맛점하세요 2
네엡
-
이거 어디가 잘못된 거임? 다시 해서 정석대로 풀긴 풂
-
현역 고3입니다!! 친구들이 강t에서 김승리로 넘어가라고해서 설득당했는데.,....
-
준?역덕이라 중국 일본 관직, 시대, 후궁 품계까지 다 외우고 있는데 사건이랑...
-
앵그리버드임 반박안받음
-
밖에 돌아다니는 커플들 아니 주변 친구들만 봐도 그저그런 얼굴이나 솔직히 조금...
-
1사탐1과탐이면 경희대 한의예과 인문,자연 둘다 지원할수있는건가요?
-
하늘색 아기 드래곤? 키우는 게임이었음 밥 주고 이불 덮어서 재우고...
-
늦잠자서 학원 접수 올실패함 ㅜ
-
남동생한테 조언 맞게 해준 거 맞나요? 이새끼 지 할말만 하는 거 약간 킹받긴...
-
작년 강k 수학 4점짜리 문제들이 시중 n제보다 퀄 좋나요? 심심할때마다 n제 대신 풀어볼라는데
-
3모 영어 쉽네 3
으어,,, 아 아아 이게 이거네ㅡ하다 보면 거의 풀리네
-
1번틀렸다고씨발
-
실수 전체의 집합에서 실수 전체의 집합에 대응이라는 조건이 모든 정의역 집합이 모든...
-
미적 대신 언매+확통+과탐으로 약대 가능한가요
-
강의 안에서 자기 28살이라길래 진짜 28살인줄알았는데….
-
모교 다시는 안 갈줄 알았는데..
-
이름 부르나요..? 아는 애들 만날 거 같아서 불안함..

고마워요 :)떳다
항상 고마워요!
헉
캬

기하 화이팅이에요!
기하선택자는 아니지만제일 마음에 드는 칼럼러..
응원해주셔서 감사드려요..! 덕분에 힘이 나네요 :)
오늘도 오셧군뇨 믿고있었습니다

조금이나마 도움이 된다면, 언제나 찾아올거에요 :)공간도형이필요해

공도 + 이차곡선 (24.11.28) 은 어떠세요?
Goat
누추한 곳에 귀하신 분이
귀한곳에 누추한 제가왔어요고생하셨습니다 :>

정말 고마워요 ;)
아직 많이 부족하지만, 더 노력해보겠습니다 :)
떴다!
항상 감사드려요 호꿈님!文章读得很好。 我想和老师讨论一下第30道题的解答。 好像还有更简单的解释,所以想告诉您。
从P点垂下的垂线上的脚称为H,三角形PHR成为特殊的角三角形。
如果将线段QR的长度设置为K,则K+5:K-5=2:√3。
谢谢你仔细阅读我的解题! :D
您说的很正确,就像您提到的那样,在解说书中采取的方法,是更加注重抛物线定义的有效方法。 :) 只是想展示与解说纸不同的多种解法,所以采取了这个方法!
谢谢老师的高见。 数学解题有很多种,所以平时最好练习多种解题。
没错!感谢大家对韩国高考的关心!:)
어.. 그냥 미적해야겠다..

기하의 신 대약연부족하지만 더 열심히 해보겠습니다 :)