3모 수학 공통, 기하 손풀이, 영상, 주요 문제 총평(?)
게시글 주소: https://orbi.kr/00072600228
안녕하세요 공부하는데 집중이 안 돼서 3모 수학 관련해서
글이나 한 번 써볼까 해요
ㅇㅈ을 먼저 하자면 3덮 기하 100점 맞았습니다
https://youtu.be/o5OafIvtxLE?si=ll8597cjEOaKt40W
요거 링크 들어가시면 제 3모 풀이 영상이 나옵니당
(안 쓰는 계정이라 구독하셔도 영상이 안 올라갈겁니다 아마
구독하지마세영)
공통은 34분정도 걸렸고 기하는 27분 정도 걸렸어요
기하 푸는데 당 떨어져서라고 하긴 그렇고 좀 어렵긴 했어요 기하
#1010번은 전 귀찮아서 규칙성 찾고 나열해서 답 나오는 경우를 찾았어요
일반항으로 풀면
S3k-2=k+9
S3k-1=k+19
S3k. =k (k는 자연수) 잡고
Sn=S3n=n 풀면
S3k-2=k+9=3k-2 는 k가 자연수가 아니라 모순이고
S3k-1=k+19=3k-1 k=10나오고 n=3k-1에서 n=29 정답 나옵니다
S3k=k=3k 는 k가 0이라 모순이네요
#11 #1211번은 a>0인 경우 4a=-40이라 모순이어서 a<0이고
x=-2a를 f에 대입해서 -40나온다 하면 a=-2 나오고 f(2)는 -24 나오네요
12번은 -2주터 1까지 f를 정적분하고 삼각형을 빼는 방식으로 갔어요
각각의 값의 차를 구하면 63/4-3=51/4 나오네요
#13 #14
13번은 a가 음수일 때와 a가 양수일 때로 분류하시면 개형이 각각 정해지기 때문에
a가 양수일 때 최솟값을 -2로 만들어야 해서 a=2,
a가 음수일때 최댓값을 +4로 만들어야 해서 a=-4 곱하면 -8입니다.
a가 양수 일때는 최솟값만 갱신할 수 있고
a가 음수일 때는 최댓값만 갱신할 수 있다는 논리를 파악했다면 잘 푸셨을듯
14번은 부등식 왼쪽 오른쪽 적분구간이 같아서 적분기호 안에 있는 식을 각각
h(x) g(x)로 잡고 h-g를 x1부터 x2까지 적분한 것이 0보다 크다로 파악했어요
임의의 x1<x2이기 때문에 결국에 h(x)>=g(x)라는 걸 파악했으면 문제 거의 다 푼거죠죠
그러면 사진에 그래프처럼 공통접선에 접하는 사차함수를 떠올릴 수 있는데
접선의 기울기는 그냥 임의로 양수로 잡고 그렸는데 마침 f’(1)이 1이라 얻어 걸렸네요
참고로 접선의 기울기가 음수였어도 저 사차함수 공통접선 모양이 일반성을 잃진 않네요
차함수 써서 식 작성하시고 x=4 대입하면 f(4)=27 나오네요
#15
15번은 일대일대응이란 고1수학 요소가 쓰였네여
정의역과 치역에 빈 곳이 생기면 안 되고 겹치는 것도 안 되니까
주차하는 것처럼 모양을 꽉 채워야 해요(다른차를 박으면 안되겠죠?)
p=0이어야 치역의 -무한대를 채우고도 빈공간, 겹치는 공간이 생기지 않네여
저 걸리적 거리는 왼쪽의 3<=y<4 구간을 야무지게 피해가야겠죠?
그럼 a+log2q=3이어야 하고, 2^q-4=4여야 하겠네요 남은건 사진에 있는 계산을 보세여
(절대 귀찮은거아님)
#20길이 4개를 미지수 2개로 설정하시고 각 세타로 코사인 법칙 두 번 돌리면 식 두 개 문자 두 개
외접원 넓이는 사인법칙 쓰면 되겠죠?
#21 #22
21번은 정방향 추적이 유리해 보이더라구오 저도 처음엔 역방향으로 가다가
좀 싸함을 느끼고 정방향 갔습니다. a1을 미지수 잡고 a1의 범위에 따라 케이스 분류해서
a1<3, 6<=a1<18 a1=240 이렇게 나와서 381입니다.
참고로 전 18까지 더했다가 검토할 때 다시 고쳤습니다;;
22번은 규칙만 찾고 수식으로 밀었는어여
f(2)=0, |f’(2))|=8, f(0)=4 f’(0)=0임을 미분 가능 조건에서 뽑았어요
이때 최고차항 계수가 양수면 x>0이고 x=/=2에서 근을 가져서 모순이게 됩디당
따라서 음수고 f=px^3+qx^2+4 (p<0) 이고
f(2)=0, f’(2)=-8(개형상 -8입니다) 대입 하면 p=-1, q=1
-(-5)^3+(5)^2+4=125+25+4=154인데
저는 5^3을 225로 써버려서 254가 나오고 틀릴줄을 상상도 못했습니다아아 진짜 ㅋㅋ
술 먹고 푼 거 아닙니다.
기하 28번
길이를 그림처럼 l, l-3/2, k-3, k, 9/2로 쪼갤 수 있고 합은 2(l+k)입니다
이차곡선 식에서 x축대로 비율이 2:1입니다. 느낌이라 할 것도 없이 y값이 같을 때
X절댓값이 2:1이죠. 약간 미적분 241128같은?
A값이 8 나오시고 사다리꼴 넓이 구하면 82 나옵니다.
#30 29는 영양가 없어서 pass
30이 좀 헬게이튼데 각 60도인 곳에서 8, a, 10-a 미지수 잡고 코사인 돌리면
FP=3나와여 그리고 제가 푼 방식은 P Q 포물선의 꼭짓점과 초점, 준선의 x좌표까지
길이 관계를 잡고, 포물선 꼭짓점을 원점으로 놓고 PQR 등비수열(아시겠죠..?)
이용해서 길이를 구했습니다.
도움이 되셨다면 좋아요 한 번씩만 부탁드릴게여 ㅠ
진짜 ㄹㅇ 되게 엄청 열심히 썼음 나름 ! ^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
라이즈같은 떵챔으로는 안되는거야..
-
작년에 학교에서 찍은거는 못쓰나…
-
3세트 가자 3
-
까비
-
사문 정법 이번 겨울에 시작해서 개념 2번 끝내고 가출도 한번했는데 모의고사 보면...
-
요즘같이 외모평균 계속 올라가는 시대에선 너가 어떤 발악을 하더라도 반드시 필연적으로 도태될거임
-
“성적 우수자들이 되레 역차별 당해”…美대입제도에 쓴소리 한 10대 창업자 6
하버드 등 최상위대 줄탈락한 잭 야데가리 ‘칼AI’ 창업자 학점 만점에 수능도...
-
기하 개념 정리해야하긴 하는데 쎈 B단계 개념읽으며 스스로 공부+기출코드 시발점...
-
그럼 그렇지 0
대 황 젠
-
나도 보고싶은데 ㅠㅠ
-
아이스크림 사줘 17
잠오ㅓ
-
T1 보여주냐 2
기대는 안하는중 흐 흐흐
-
티원 뭐야 3
뭐야
-
독학이라고 말하는 사람들마다 기준이 조금씩 다른듯한데 1. 책으로만 공부하기 2....
-
찍기 13
정답은 댓글에
-
가 실수전체의 집합에서 미분가능하게 하도록 하는 함수 f(x)가 존재한다 (O/X)...
-
차 사면 여친 생기나
-
나를 응원해다오 3
ㅜㅜ
-
부스터 #~#
-
이게 뭐하는거냐 왜 살아 진짜
-
그니까 3년 전 이맘때쯤만 해도 GPT가 없었다는 거잖아? 그시절에어떻게살았을까
-
같이 먹어요
-
작년에 생지했는데 둘다 22 나옴 그래서 지금 윤도영교재로 자습, 이신혁 교재로...
-
그건 뭘까
-
화1 해봤고 내신대비용으로 하려는데 강의 너무 긴데 그냥 교재만 봐도 됨? 완자랑...
-
국어 현강 0
국어 현강 처음으로 들어보려는 현역인데 혹시 지금 이 시기에 듣기 시작해도 문제...
-
3점대 초반이 보통 지역인재 의대를 쓰는 학교에서 수과학 1점대로 내신 2점...
-
공부한다고 되는건지 아니면 재능빨인지 궁금하네
-
ㅈㄴ머리깨지는데재밌네....
-
6독서 0 문학 3 매체
-
그냥 궁금해서요 1
흐음
-
미국에서 10대가 몬스터 처먹다 뒤졌다길래 본래 카페인 음료인 거는 알앗는데 그...
-
독서 지문 수가 너무 적고 소재가 한정적임 국어강사들 배경지식 무용론으로 수능국어는...
-
몰몰몰몰 울었어ㅠ
-
기출은 다 풀어봤을거니까요
-
아니 구마구마야 5
너 누구냐?
-
80분/100 15번 문제 되게 좋음 한번 꼭 풀어보세요 계산도 깔끔하고 전반적으로좋았던 시험지
-
담배피고싶어 15
연초는 그렇다쳐도 전담은 왜 못피게 함
-
13도인데 패딩 입어도 됨?
-
골라보셈 12
?
-
왜 생2는 별로 없는거같지
-
밥먹고 0
인강 잠오ㅓ
-
한남왔어 8
자 다같이 안녕하세요 시~작.
-
돈벌고싶다 5
진지하게 내가 님들집 메이드녀 되줄테니깐 시급 12000원 ㄱㄱ
-
항상 고민되는 게 글을 얼마나 자세히 써야 하냐인데 2
흠... 고민이 되네요
-
44위로갈 가능성 높음? 그래도 그건아닌가
-
걍 이새낀 벡터에 미친새기인거임 ㅇㅇ;;
-
좋네요 좋아
레전드 황이잔아..
캄사합니다.. ㅋㅋ 나름 열심히 썼는데 다들 별로 맘에 안 드셨나봐여 ㅠ
기하..기하라서그래요..