[칼럼] 신화의 자격 1-그래프는 언제, 왜 부정확할까?
게시글 주소: https://orbi.kr/00072576813
안녕하세요, 신화의 자격/전설의 자격 칼럼 연작을 쓰는 이지은 국어(하예은)입니다.
신화의 자격 칼럼의 타겟층은 현재 성적대와 무관하게 최소한의 머리가 있는 모든 수험생이라고 생각했으면 좋겠습니다
230614입니다 알 사람은 아시겠지만, 당해 대부분의 해설이 소위 뒷북에 해당하며 다음 해가 되어서도 제대로 된 해설은 많지 않았습니다.
당해 대부분의 해설은 단순히 이차함수 g’(x)의 일차항의 부호가 음수일 때, 0일 때, 양수일 때로 분류해서 푸는 것이었는데요
5번 ㄱㄴㄷ를 고른 학생 중에 믿찍 5도 있었겠지만 다수는 그래프를 두어 개 그리고 나서
극댓값을 갖네? 역시 평가원은 대단해
를 외치며 산화했죠. 이런 실태를 반영하여 2024학년도 강사 AGR 연구실은
단정적인 진술이므로 함수 f(x)가 극댓값을 가지지 않는 경우가 있는지 의심해야 한다. 반례를 찾기 쉽도록 y=x^3을 함수 g(x)로 두어 보자
라는 지면 해설을 제공한 바 있습니다. (하얀 커버, 빨간 글씨 까만 글씨 섞임)
이는 위의 해설보다 훨씬 낫다고 생각합니다. 0을 따로 생각해야 할 당위가 없다는 걸 제가 글(포만한)로 쓸 만큼 해설이 어려운 문제이기 때문에 이런 고육지책을 썼다고 이해해 줍시다
그럼 다음 문제로 각자의 방법론을 테스트해 보고 본격적으로 그래프에 대해 설명할게요
출제는 끝났지만 해설 쓸 사람이 없어서 배포 못하고 있는 하예은 3대비 모의고사입니다.
관심 있으시면 여기로 들어와 주세요
먀
ao.com/o/st1rijjh
아무튼 이 문항의 ㄱ 선지는
(1) 가능한 모든 상황을 그래프로 그리기에 매우 부적합하고
(2) 귀류를 쓰면 증가함수라는 의미가 발견되고 그때 a+b=0이므로 하나의 반례가 구성된다
는 특징을 가지고 있습니다. 이때 이 문항 출제의도가 귀류가 아님에도 귀류로 풀면 잘 풀린다는 점에서 AGR 연구소의 230614 해설이 바람직한지 여부를 떠나 출제의도와 부합하는지는 의심할 수 있죠
처음으로 돌아와서, 그래프가 부정확한 순간은 언제일까요?
대답을 바로 해야 한다면 대부분
특수한 상황일 때, 더 정확히 말하면
특수한 상황(유한한 경우)과 일반적 상황(무한한 경우)가 다를 때
라고 말할 텐데요, 자세히 생각해 보면 이건 동어반복에 가까운 말임을 느낄 수 있습니다.
하지만 아닙니다. 사실이 아니니까.
고1 때 원과 접하는 직선의 개수를 중심과 직선 사이의 거리로 다 못 계산하는 걸 보았죠? 그때 식으로 얻을 수 없는 기울기가 무한이죠?
그리고 기울기가 무한인 기울기의 개수 또한 무한한 경우이잖아요.
직관이 틀린 상황에서 우리는 자료를 통해 생각을 재구성해야 합니다.
230614의 ㄴ은 식으로는 이차함수가 극값을 가지는 확정적 순간이, 꺾이는 지점에서 극값이라는 잠정적 순간과 상쇄되어, 그래프로는 이치힘수가 극값을 가지는 잠정적 순간을 확정적으로 여겨서 발생합니다.
뭐요시발왜요
그래프에게 유한한 건 식으로는 무한할 수 있으니까.
하예은모의 ㄱ은 같은 프레임을 따라
식으로는 삼차함수가 증가한다는 확정적 순간이, 그래프로는 삼차함수가 꺾이는 잠정적 순간이
a=b=0과 상쇄-참이지만 그 함의가 변질된다는 점에서 그렇습니다-되기 때문
으로 해석하면 되죠!
세 줄 요약
식-확정적
그래프-잠정적
부정확-상쇄
심화 내용은 전설의 자격 1편에서 보겠습니다. 이건 스스로 남다른 기질이나 재능이 있다고 믿는 분들만 보시기 바랍니다.
0 XDK (+2,000)
-
2,000
-
강기원 9주차 부터 라이브로 들었고 1-4주차 복영 사서 주2회 강기원 수업 들었고...
-
신라면 유기할정도에요? 다음에는 안성탕면으로 부셔서먹어야겠네요
-
중간계획표 세우면서 행복회로 돌려야겠음
-
제곧내
-
진짜임?
-
스블 미적 완강하면 n제 그만풀고 실모 들어갈건데 지금 생각중인건 강k 서바중에...
-
라면 부셔먹기 7
일주일을 달린 저에게 주는 보상임
-
여사친이… 있어? # 있어야 좋아하지 # 있어야 만나지
-
근대 원래 인증하고 시간 지나면 내리는게 국룰이에요? 10
전 상관업는데 신기하군뇨.. 아싸라 그런가
-
민지야~ 6
-
여자들만 행복해!!!
-
대체 어느정도까지 심해야..
-
웨 몷라?
-
수특 한권이 전부임 놀랍게도
-
큐브상담에소 공통하고 미적 하라고하셔서 그러고있는데 미적 안하니까 불안해요
-
1에서 10까지
-
유튜브에도 있네 ㅋㅋㅋㅋㅋ 이때 나몰라패밀리 감성 지금 보니까 못 견디겠노 ㅋㅋㅋ
-
내가 미각이 마비된건 아닐텐데 너무 심했다...
-
영어기출필수론 28
영어는 기출만 보면 된다고 생각함 교육청도 필요없음 평가원만 7개년 기출만 계속...
-
공간벡터는 살짝 머리아프네 벡터 자체가 아직 어색해서 그런가
-
다음닉추천받음 16
생각해본거 저능강해린 1.0 지망생 1.0 강해린 08
-
실력은 오르는데 0
속도가 떨어지는중ㅋㅋ 공부란 어렵구나..
-
출기 출기능수 예전 네임드
-
막 이런거 수2 생기부에 넣어도 되나 그리고 넣을수 있나..?(야한거아님)
-
국어 정확히는 기출만 보면 안되고 기출 마르고닳도록 보는건 효과가 적다 반복은...
-
가형 킬러 21번 30번 이런건 아예 걸러도됨
-
내가그럼..
-
다른 사람 같음
-
모두들 비켜라 크아악
-
아니국민연금생각하면딱히부럽지가않아
-
미적분 상담 7
1까지는 솔직히 절대 쉽지 않아서 현실적으로 수능까지 미적 2까지 열심히 해보는게...
-
지갑 안 갖고 나와서 어쩌지 하고 있었는데... 나 05년생 새내긴데...
-
3모 이거 ㄹㅇ임? 10
사실 제가 예상해본거임 생윤 120019명 사문 148762명 물1 34028명...
-
난뭐가좋은문제인지모름 안목이없음
-
저나이때로돌아가면상산고정문개박살내고홍성대전이사장님악수쌉가능인데
-
아이고 아이고
-
흐음 집에서 라면 끓여먹는게 나았으려나
-
도플러 효과는 파원의 속력이 파동의 속력보다 작을 때만 발생하는 물리적 현상입니다....
-
수시충인데 메디컬에 미련을 못버리겠네요.. 솔직히 작수 치고 더해도 안되겠다...
-
기만중에서 5
노베기만이 제일 긁혀요 아 오르비 노베 수준 더럽네 높네
-
올해는 4규s1 vs 빅포텐s1 뭐가 더 어렵나요? 0
작년엔 4규가 더 어려웠다는 말이 많던데 올해는 어떤가요? 그냥 비슷비슷한감
-
자전거타기 6
오랜만에 탔더니 힘들어서 포카리 500ml 순삭
-
그게 내 운명인 거시다...
-
국수(탐) 중에 추천 부탁드립니당
-
다음주부터 빡공할거야!
-
노베라서 울었어요... 풀이도 저능아 풀이라서 양해부탁드려요...
-
공부 의지 약하면 잠깐이라도 잇올 다니는 게 나을까요? 2
너무 비싸서 못 다니고 있는데 2~3달 정도라도 짧게 다녀볼까 고민 중인데 괜찮을까요?
-
절대 한끼에 다 못 먹는데
GOAT

“부정확-상쇄”극한상쇄가 저의 문법에 따르면 헛소리가 아닙니다. 한 극한이 다른 극한에 먹히는 것도 저는 상쇄라고 불러서
닉언 ㄷㄷ
님이 포만한 그분이셨구나
헉 포만한도 하시는군요
포만한에선 비교적 라이트유저입니다
첫문제는 정보량 관점에서 보면
f정적분한걸 좌변으로 두고 g와 -g로 구간별로 정의된 함수로 두는게 더 문풀에 도움이 될거 같다는 교훈도 있네요
연의 goat
외쳐 대예은