[칼럼] 신화의 자격 1-그래프는 언제, 왜 부정확할까?
게시글 주소: https://orbi.kr/00072576813
안녕하세요, 신화의 자격/전설의 자격 칼럼 연작을 쓰는 이지은 국어(하예은)입니다.
신화의 자격 칼럼의 타겟층은 현재 성적대와 무관하게 최소한의 머리가 있는 모든 수험생이라고 생각했으면 좋겠습니다
230614입니다 알 사람은 아시겠지만, 당해 대부분의 해설이 소위 뒷북에 해당하며 다음 해가 되어서도 제대로 된 해설은 많지 않았습니다.
당해 대부분의 해설은 단순히 이차함수 g’(x)의 일차항의 부호가 음수일 때, 0일 때, 양수일 때로 분류해서 푸는 것이었는데요
5번 ㄱㄴㄷ를 고른 학생 중에 믿찍 5도 있었겠지만 다수는 그래프를 두어 개 그리고 나서
극댓값을 갖네? 역시 평가원은 대단해
를 외치며 산화했죠. 이런 실태를 반영하여 2024학년도 강사 AGR 연구실은
단정적인 진술이므로 함수 f(x)가 극댓값을 가지지 않는 경우가 있는지 의심해야 한다. 반례를 찾기 쉽도록 y=x^3을 함수 g(x)로 두어 보자
라는 지면 해설을 제공한 바 있습니다. (하얀 커버, 빨간 글씨 까만 글씨 섞임)
이는 위의 해설보다 훨씬 낫다고 생각합니다. 0을 따로 생각해야 할 당위가 없다는 걸 제가 글(포만한)로 쓸 만큼 해설이 어려운 문제이기 때문에 이런 고육지책을 썼다고 이해해 줍시다
그럼 다음 문제로 각자의 방법론을 테스트해 보고 본격적으로 그래프에 대해 설명할게요
출제는 끝났지만 해설 쓸 사람이 없어서 배포 못하고 있는 하예은 3대비 모의고사입니다.
관심 있으시면 여기로 들어와 주세요
먀
ao.com/o/st1rijjh
아무튼 이 문항의 ㄱ 선지는
(1) 가능한 모든 상황을 그래프로 그리기에 매우 부적합하고
(2) 귀류를 쓰면 증가함수라는 의미가 발견되고 그때 a+b=0이므로 하나의 반례가 구성된다
는 특징을 가지고 있습니다. 이때 이 문항 출제의도가 귀류가 아님에도 귀류로 풀면 잘 풀린다는 점에서 AGR 연구소의 230614 해설이 바람직한지 여부를 떠나 출제의도와 부합하는지는 의심할 수 있죠
처음으로 돌아와서, 그래프가 부정확한 순간은 언제일까요?
대답을 바로 해야 한다면 대부분
특수한 상황일 때, 더 정확히 말하면
특수한 상황(유한한 경우)과 일반적 상황(무한한 경우)가 다를 때
라고 말할 텐데요, 자세히 생각해 보면 이건 동어반복에 가까운 말임을 느낄 수 있습니다.
하지만 아닙니다. 사실이 아니니까.
고1 때 원과 접하는 직선의 개수를 중심과 직선 사이의 거리로 다 못 계산하는 걸 보았죠? 그때 식으로 얻을 수 없는 기울기가 무한이죠?
그리고 기울기가 무한인 기울기의 개수 또한 무한한 경우이잖아요.
직관이 틀린 상황에서 우리는 자료를 통해 생각을 재구성해야 합니다.
230614의 ㄴ은 식으로는 이차함수가 극값을 가지는 확정적 순간이, 꺾이는 지점에서 극값이라는 잠정적 순간과 상쇄되어, 그래프로는 이치힘수가 극값을 가지는 잠정적 순간을 확정적으로 여겨서 발생합니다.
뭐요시발왜요
그래프에게 유한한 건 식으로는 무한할 수 있으니까.
하예은모의 ㄱ은 같은 프레임을 따라
식으로는 삼차함수가 증가한다는 확정적 순간이, 그래프로는 삼차함수가 꺾이는 잠정적 순간이
a=b=0과 상쇄-참이지만 그 함의가 변질된다는 점에서 그렇습니다-되기 때문
으로 해석하면 되죠!
세 줄 요약
식-확정적
그래프-잠정적
부정확-상쇄
심화 내용은 전설의 자격 1편에서 보겠습니다. 이건 스스로 남다른 기질이나 재능이 있다고 믿는 분들만 보시기 바랍니다.
0 XDK (+2,000)
-
2,000
-
막 컴퓨터 얘기하고 전공 얘기하고 술 들어가니까 내가 그러더라 ㅅ발
-
캬캬
-
BD와 CP의 교점, AC와 BP의 교점, AF와 DG의 교점, AC와 BD의...
-
거실에 0
아빠가 자고있음 화장실가면 깨려나
-
잘 4
자요
-
뭐라도 할까 7
으음..
-
낭만의 언기물지 4
참가부탁
-
안되는 것을 될수도 있는 것으로 착각해서 여기까지 왔는데 안되는 것을 깨달았지만...
-
bxtre.kr/
-
수학할 땐 맨날 새로웟는데 말이지
-
인설의 목표인데 지구랑 너무 안 맞고 점수 잘 나와본 적 없음 외우는 거에...
-
다 덮인 앞머리 있는 상태로 나가는 걸 존ㄴㄴ나 싫어함
-
레전드 ㅋㅋ, 2명은 부모님이심
-
관심없으면 아예 사실 지금 반 애들 이름도 모름 아직
-
물갈이 빠르네
-
미용실가서 생애처음 펌도 해봤고 무신사에서 옷도 사봤고 다이어트도 많이 해봤고 그냥...
-
행복하지마요 2
행복하려면 사랑한 날 잊어야 하잖아 가시가 박힌듯 숨쉴때마다 눈물이 흘러와 사는게 사는것이 아니죠
-
친구 만들까
-
눈물이 2
주르르
-
사1 과1 하시는 분들이 많이 보이시는데 사1 과1의 장점이 뭐라고 생각하시나요?...
-
잠은 짜피 못 잔다리
-
ㄹㅇ 성형 어쩌고 하는것도 막 엄청 잘생겨지고 싶어서 그런게 아니라 최대한...
-
뛸 준비하기
-
오마이갓 5
불끄고 폰하니까 눈에 피로감이 으읔
-
나답군
-
야!!!!!! 12
-
행복한 상상 하자
-
잘거야 4
7시에 기상해야해 짜증도 자고일어나면 풀리겠지?...
-
bxtre.kr/
-
달리살기. 1
누울 때 일어나고 일어날 때 걷고 걸을 때 뛰고 뛸 때 날기
-
센츄 다신분들 0
저도 이번 3덮 국수 표점으로 신청하고 싶은데 계열기준에선 1% 넘어기고...
-
3옥레 성공. 4
하나레 바나레에테모 토키메에쿠모노오
-
ㅈㄱㄴ
-
내 스크랩은 6
90%는 컨텐츠 리뷰 글나머지는 탐구 칼럼
-
사실 새디스트임 2
ㄷㄷ
-
내 성적 취향. 7
...
-
저는 성적 취향 모름요 21
생각해본적 없어요 아물론 저번학기 성적 주면 절하고 받슴니다
-
24수능 언미영생지 백분위로 98 99 1 98 95였음 24 수능 이후로 국어랑...
-
스카 다니면서 독재했는데 공부 시간은 어느 정도 나오면서도 너무 생활패턴이...
-
우는거랑 치마 조아함
-
뭐가더낳냐
-
욕심 ㄴㄴ
-
맘에 안 드는 부분이 하나 잇음
-
머리가 안 되겟다
-
아무도 없는데에
-
조까튼 월요일 5
축구도 비겨서 짜증나
-
아 아니다, 지금이 낫다
-
ㄹㅇ 부럽네, 고2인데 이상한거 관심 안 들이고, 수능에 관심 잇어서 온거자늠 난...
GOAT

“부정확-상쇄”극한상쇄가 저의 문법에 따르면 헛소리가 아닙니다. 한 극한이 다른 극한에 먹히는 것도 저는 상쇄라고 불러서
닉언 ㄷㄷ
님이 포만한 그분이셨구나
헉 포만한도 하시는군요
포만한에선 비교적 라이트유저입니다
첫문제는 정보량 관점에서 보면
f정적분한걸 좌변으로 두고 g와 -g로 구간별로 정의된 함수로 두는게 더 문풀에 도움이 될거 같다는 교훈도 있네요
연의 goat
외쳐 대예은