[칼럼] 신화의 자격 1-그래프는 언제, 왜 부정확할까?
게시글 주소: https://orbi.kr/00072576813
안녕하세요, 신화의 자격/전설의 자격 칼럼 연작을 쓰는 이지은 국어(하예은)입니다.
신화의 자격 칼럼의 타겟층은 현재 성적대와 무관하게 최소한의 머리가 있는 모든 수험생이라고 생각했으면 좋겠습니다
230614입니다 알 사람은 아시겠지만, 당해 대부분의 해설이 소위 뒷북에 해당하며 다음 해가 되어서도 제대로 된 해설은 많지 않았습니다.
당해 대부분의 해설은 단순히 이차함수 g’(x)의 일차항의 부호가 음수일 때, 0일 때, 양수일 때로 분류해서 푸는 것이었는데요
5번 ㄱㄴㄷ를 고른 학생 중에 믿찍 5도 있었겠지만 다수는 그래프를 두어 개 그리고 나서
극댓값을 갖네? 역시 평가원은 대단해
를 외치며 산화했죠. 이런 실태를 반영하여 2024학년도 강사 AGR 연구실은
단정적인 진술이므로 함수 f(x)가 극댓값을 가지지 않는 경우가 있는지 의심해야 한다. 반례를 찾기 쉽도록 y=x^3을 함수 g(x)로 두어 보자
라는 지면 해설을 제공한 바 있습니다. (하얀 커버, 빨간 글씨 까만 글씨 섞임)
이는 위의 해설보다 훨씬 낫다고 생각합니다. 0을 따로 생각해야 할 당위가 없다는 걸 제가 글(포만한)로 쓸 만큼 해설이 어려운 문제이기 때문에 이런 고육지책을 썼다고 이해해 줍시다
그럼 다음 문제로 각자의 방법론을 테스트해 보고 본격적으로 그래프에 대해 설명할게요
출제는 끝났지만 해설 쓸 사람이 없어서 배포 못하고 있는 하예은 3대비 모의고사입니다.
관심 있으시면 여기로 들어와 주세요
먀
ao.com/o/st1rijjh
아무튼 이 문항의 ㄱ 선지는
(1) 가능한 모든 상황을 그래프로 그리기에 매우 부적합하고
(2) 귀류를 쓰면 증가함수라는 의미가 발견되고 그때 a+b=0이므로 하나의 반례가 구성된다
는 특징을 가지고 있습니다. 이때 이 문항 출제의도가 귀류가 아님에도 귀류로 풀면 잘 풀린다는 점에서 AGR 연구소의 230614 해설이 바람직한지 여부를 떠나 출제의도와 부합하는지는 의심할 수 있죠
처음으로 돌아와서, 그래프가 부정확한 순간은 언제일까요?
대답을 바로 해야 한다면 대부분
특수한 상황일 때, 더 정확히 말하면
특수한 상황(유한한 경우)과 일반적 상황(무한한 경우)가 다를 때
라고 말할 텐데요, 자세히 생각해 보면 이건 동어반복에 가까운 말임을 느낄 수 있습니다.
하지만 아닙니다. 사실이 아니니까.
고1 때 원과 접하는 직선의 개수를 중심과 직선 사이의 거리로 다 못 계산하는 걸 보았죠? 그때 식으로 얻을 수 없는 기울기가 무한이죠?
그리고 기울기가 무한인 기울기의 개수 또한 무한한 경우이잖아요.
직관이 틀린 상황에서 우리는 자료를 통해 생각을 재구성해야 합니다.
230614의 ㄴ은 식으로는 이차함수가 극값을 가지는 확정적 순간이, 꺾이는 지점에서 극값이라는 잠정적 순간과 상쇄되어, 그래프로는 이치힘수가 극값을 가지는 잠정적 순간을 확정적으로 여겨서 발생합니다.
뭐요시발왜요
그래프에게 유한한 건 식으로는 무한할 수 있으니까.
하예은모의 ㄱ은 같은 프레임을 따라
식으로는 삼차함수가 증가한다는 확정적 순간이, 그래프로는 삼차함수가 꺾이는 잠정적 순간이
a=b=0과 상쇄-참이지만 그 함의가 변질된다는 점에서 그렇습니다-되기 때문
으로 해석하면 되죠!
세 줄 요약
식-확정적
그래프-잠정적
부정확-상쇄
심화 내용은 전설의 자격 1편에서 보겠습니다. 이건 스스로 남다른 기질이나 재능이 있다고 믿는 분들만 보시기 바랍니다.
0 XDK (+2,000)
-
2,000
-
진짜존나힘드네 4
일단 자야지 죽겠다 ㅅㅂ
-
확통런 고민 4
원래 수의대가 가고 싶어서 이과 밀다가 전혀 가망 없는 것 같아서 문과로 틀었습니다...
-
님들 생각에 4
N수 할 때 돈 아낄 건 최대한 아껴야 한다(1) vs 될 수 있는 만큼 최대한...
-
그냥 강e분 할까요? 국어를 젤 못해서 걱정입니다...
-
ㅅㅂ 군대 가려고 뭐하는 짓이노..... 필기 90점으로 합격하고 이제 실기...
-
손
-
입이 너무 심심하려나 흠 ...
-
현대시 다 들었는데 필기 하나도 안함... 2회독 하면서 할게요... 집에서 쉴때 들었어서...
-
사오토메 메아리쨩이 카와이해서 볼맛남
-
갑자기 몇연타로 올리다가...
-
카리나입니다.. 8
속은건지 속은척한건지 모르겠지만 감사합니다
-
실수식 공부법 0
오르비는 입시 커뮤니까 오르비 하면 공부한거임
-
과제 개시발같네 0
아 개귀찮다 진짜
-
넵 기만 맞습니다
-
중딩때 영어 학원숙제 글자 적기 겁나 귀찮아서 필기체 배웠었는데 수행평가 준비할 때 겁나 편하긴 함
-
오늘 지면 챔스권 수성도 걱정해야하고 이기면 한가닥의 희망(사실상 0) 이 있다...
-
누워서 애니노래 들으면서 수학 문제 풀기
-
아침마다 이러고 샤워합니다
-
자 어디한번 자극해보시지
-
확통 수2 미리 샀고 최근에 수1 배달왔는데 이거는 답지가 따로 있네요 수2는...
-
사진주의) 야추 인증을 25
이렇게 올린거임?
-
먹자 좀
-
수학 3
요즘 조금 깔끔하게 푸는듯!
-
눈뜨자마자 열품타켜서 잠잘때 열품타 꺼야 나오는 수치 아님?
-
힘드네 기빨린다…
-
누가 구라라고 해줘
-
기계반란 일어나면 난 바로 처형일듯? 지랄같은 문제로 괴롭힌 죄
-
이제 글 그만 쓸게요 14
짜피 99%는 의미없는 글이니 뭐 심심한 때처럼 활동하겟음 이제 짜피 그떄가 더 옯창이엿음 지금보다
-
시발점 들을 때 우진T가 칠판에 판서하는 내용 전부 책에 옮겨적나요? 아니면 노트에...
-
꿀맛같은 휴식
-
하루에 4문제 푸는게 왜 힘든걸까
-
혹시 예과 기준 학점 4.0 이상 받는 난이도가 어느 정도인가요?
-
난도가 전에 비해 약갼쉬워졌다는글을 봤는데 난도나 퀄은 어떤가요???
-
23수능 특 40
언매 만점자 300명대고 미적 만점자 900명대인데 국어는 물이고 수학은 불이래...
-
중고딩 연애도 연애로 인정하는지, 하루사귄것도 인정하는지 궁금하네
-
담주에는 올라나..
-
김현우 앞부분 1
수2부터 들어서 미적시즌 못 들었는데 내신휴강기간동안 앞부분 영상만 구해서 들어도...
-
급신 신청 7
깜빡하고 안했는데 내일꺼 신청 안되네.. 몰래먹을까
-
조금 난이도 있는 문제를 풀었다 하면 대부분이 조건해석이 포인트인 문제인듯 뭐지...
-
밥사달라고 1
배고프다고
-
다음 논리전개 과정에서 오류를 찾아보시오
-
습
-
약간 인잘존예인싸 개착한 애들 많을것 같은 느낌임
-
오늘은 스벅 스킵할까 슬슬 다 마감해서 ㅈㄴ 먼데까지 가야됨
-
나형이라고 해도 기분이좋아요
GOAT

“부정확-상쇄”극한상쇄가 저의 문법에 따르면 헛소리가 아닙니다. 한 극한이 다른 극한에 먹히는 것도 저는 상쇄라고 불러서
닉언 ㄷㄷ
님이 포만한 그분이셨구나
헉 포만한도 하시는군요
포만한에선 비교적 라이트유저입니다
첫문제는 정보량 관점에서 보면
f정적분한걸 좌변으로 두고 g와 -g로 구간별로 정의된 함수로 두는게 더 문풀에 도움이 될거 같다는 교훈도 있네요
연의 goat
외쳐 대예은