[이동훈t] 기출 구조 분석 (251121)
게시글 주소: https://orbi.kr/00072572001
2026 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 작년 수능 공통 21 번
구조 분석을 해보겠습니다.
바로 본론 들어가실까요 ?
맨 위에서부터
교과서 수학2 함수의 극한 대단원 연습문제,
2019 수능 나형 21 번,
2025 수능 공통 21 번
이고 ...
이 세 문제의 풀이를
단계 별로 뜯어서 살펴보면
동일 유형의 문제가
어떤 식으로 변형, 발전되는지를
이해할 수 있습니다.
문제의 구조를 표로 정리하면 ...
작년 수능에서
만점을 노린 수험생이라면
시험장에서 이 문제를 읽고 나서 ...
19 학년도 나형 21 번의
전형적인 풀이 과정이
바로 떠올랐어야 하고 ...
3 번의 단계에서
이전에 없던 결합이 출제되었을 것이다.
라는 생각을 가지고
문제를 접근했어야 합니다.
그리고
출제자의 관점에서 보면 ...
동일 유형 출제 텀을 6 년
( 19 -> 25 )
으로 잡은 것은 ...
간만에 출제된 유형을
대부분의 수험생들이
어려워하기 때문입니다.
킬러, 준킬러의 경우
수능을 기준으로 최소 5년 정도가 지나야
수험생에게 낯설게 보이고,
체감 난이도를 높일 수 있습니다.
그래서 최근 몇 년 간의 기출만
푸는 것은 상당히 위험하다 ...
제가 항상 강조하고 있고요 ...
그리고
교과서 연습문제의 전형적인 풀이 과정에
고1 의 중요한 개념들(3번)을 결합시켜서
난이도를 높인 것은 ...
평가원이 난문을 만드는 전형적인 방식입니다.
2030 학년도 즈음에 ...
3 번 자리에 어떤 소재가 결합될지
벌써부터 궁금해 지는데요.
2~3차 방정식과 결합될 수 있는
모든 소재가 대상이 될 것입니다.
위의 표를 다시 보시면 ...
19 학년도 나형 21 번의 경우에는
분수식의 성립 조건을 평가하고 있고,
25 학년도 공통 21 번의 경우에는
거미줄 도형에서 수렴 값을
찾을 수 있는 가를 평가하고 있습니다.
전자는 흔하고 ...
후자에서 보여준 결합은
이번이 사실상 처음인 것 같네요.
하지만 결합이 새로울 뿐 ...
삼차방정식의 실근의 개수,
거미줄 도형(수열)+해집합의 포함관계/상등,
...
과 같은 주제들은 수능에서 종종 출제된 바 있습니다.
위에서 말한 것처럼 ...
오래간만에 & 낯선 조합으로
출제되어서 체감 난이도가 높아졌을 뿐입니다.
이런 결합은 풀고 나면 뻔하지요.
하지만 수능 하루 전까지도
예상 하기 힘듭니다.
이제 수학 내용적인 부분 살펴보시면 ...
삼차방정식 f(x)=0 의 실근의 개수가
유일함을 보이는 방법은
크게 두 가지 일 텐데요.
(1) 삼차함수의 그래프의 개형 + 해집합의 포함관계/상등
f(2x+1) = f(2(x-(-1/2)))
로 변형하여
삼차함수의 평행이동, 확대축소의
관점에서 접근해도
방정식 f(x)=0 의 실근의 개수가 1 임을 보일 수 있습니다.
방정식 f(x)=0 의 해집합을 A,
방정식 f(2x+1)=0 의 해집합을 B
라고 하면
집합 B 가 집합 A 를 포함시켜야 하는데 ...
집합 A 의 원소의 개수가 2 또는 3 일 때,
함수 f(x) 의 그래프를 그려보면
집합 A 의 원소 중에서 집합 B 에 포함되지 않는 것이
반드시 있을 수 밖에 없지요.
집합 A 의 원소가 1 일 때,
두 함수 f(x), f(2x+1) 의 그래프를 그려보면
각각 x 절편이 alpha, 1/2*alpha - 1/2
이고, 이 두 값은 서로 같을 수 밖에 없으므로
alpha = -1
이때, A=B 입니다.
시험장에서는 이렇게 해결해도 좋습니다만.
아마도
이 문제의 출제자들은
아래의 풀이를
출제 의도로 삼았을 가능성이 높습니다.
(2) 거미줄 도형 + 해집합의 포함관계/상등
다음의 사고 과정을 거쳐야 합니다.
삼차방정식 f(x)=0 의 실근의 개수는
1 또는 2 또는 3 이다.
그런데 삼차방정식 f(x)=0 의 해집합은
{alpha, 2alpha+1, 4alpha+3, 8alpha+7, ...}
이고, 이 집합의 원소의 개수는 무한할 수 없다.
이제 귀류법을 이용하자.
만약 alpha != 2alpha+1 라고 가정하면
위의 해집합의 모든 원소의 값은 다르므로
(즉, 해집합이 무한집합이므로)
이는 가정에 모순이다.
(이때, 거미줄 도형을 그리면서
기하적으로 확인이 바로 가능합니다.)
따라서 alpha = -1 이다.
이때,
{alpha, 2alpha+1, 4alpha+3, 8alpha+7, ...} = {-1}
위의 풀이 과정에서
집합의 포함관계/상등에 대한 이해가 필요하였고 ...
단순히 수식을 이용하는 것보다는
아래의 풀이 처럼
거미줄 도형을 그리면 시각적으로
alpha = -1
(두 직선 y=2x+1, y=x 의 교점의 x 좌표)
가 바로 보입니다.
네 ... 풀이 깔끔하고 좋고요 ~
짝짝짝 ~
위의 풀이처럼 ...
거미줄 도형에서
수열의 수렴, 발산을 따지는 경우가 있고 ...
이 문제의 경우
{a1, a2, a3, ... , an, ...} = {alpha}
즉, 수열 {an} 의 모든 항이 alpha(=-1) 로 같으면
이 수열은 alpha 에 수렴한다.
문제 풀이 경험이 많은 분들은 아시겠지만
위의 문제는 좀 특수한 경우이긴 합니다.
그래서 출제가 가능했던 것이고요.
(아니면 미적분의 수열의 극한에서
출제되었어야 하지요.)
참고로 ...
해집합의 포함관계/상등, 해집합의 연산이
중요하다는 것은
작년 6모 심층 분석에서
이미 언급한 적이 있습니다.
[이동훈t] 6월 심층분석 (전문항)
위의 글의 20 번 분석에서
언급한
1997 학년도 공통 29 번
은 여전히 중요해 보이고 ...
올해 해집합의 포함관계/상등이 출제된 만큼
향후 2~3년 안에
해집합의 연산이 출제될 가능성은
상당히 높아 보입니다.
만점을 노리는 분들이라면
971129
를 반드시 연구해보시길 바랍니다.
이처럼 출제 된 지 오래된 주제 중에서
중요한 것은 칼럼에서 계속 다뤄 볼 것입니다.
.
.
.
글 끝내기 전에 ...
책 자랑 좀 하자면 ...
1, 2, 3(삼차방정식의 실근의 개수), 4 에 대한 설명은
2026 이동훈 기출 수학2 문제집의 유형별 개념에서
설명하였습니다. (아래)
이 정도 정리해두셔야
시험시간에 풀이가
술 ~ 술 ~ 술 ~
나올 것이고 ...
4 의 거미줄 도형(수열)에 대한 설명은
2026 이동훈 기출 수학1 문제집의 유형별 개념에서
자세하게 다룹니다.
이건 좀 생략하고요.
.
.
.
정말 마지막으로 ...
4 의 거미줄 도형이 결합된 기출 문제
몇 개 살펴보면 ...
우선 05학년도 6월 나형 15 번 입니다.
위의 문제는
{a1, a2, a3, ... , an, ...}
가 무한집합이면서
수열 {an}이 수렴하는 경우를 다루고 있습니다.
사실 이제 자주 다루는 상황이고 ...
작년 공통 21 번의 상황은 특수하다고 볼 수 있겠습니다.
아래는 2019 학년도 가형 21 번 입니다.
이 문제는
수열의 점화식을 이용하여 거미줄 도형을 그리면
전체 구조가 뚜렷하게 보입니다.
f(-1) 에서 -1 은
두 직선 y=2x+1, y=x 의 교점의 x 좌표 인데요 ...
재미있게도 ...
두 함수
f(x), f(2x+1)
가 보이네요.
개인적으로는
25 학년도 공통 21 번에서 주어진
두 함수 f(x), f(2x+1) 를 보고 나서
바로 위의 문제 (2019학년도 가형 21번)가 떠올랐습니다.
이런 식으로 재활용하는 것은
수능 출제자들의 재치랄까 ...
어차피 똑같은거 또 내도 어려워 할끄니까 ~
아래는 작년 수능 공통 20 번 입니다.
위의 문제에 대해서는 몇 달 전에 짤게 감상을 올린 바 있고 ...
[이동훈t] 20번 분석 + 전 문항 짧은 감상
이 문제는
조만간 새롭게 분석 글을
올려드릴 예정입니다.
다음에 또 만나요 ~!
노베 기출 수학1+수학2+미적분 (PDF)
https://docs.orbi.kr/docs/12978
노베 기출 수학1+수학2+확률과 통계 (PDF)
https://docs.orbi.kr/docs/12979
2026 이동훈 기출 기하 PDF
https://docs.orbi.kr/docs/13000/
고1 기출 평가원+교사경 (무료PDF)
학습법, 수학 칼럼 링크 모음 ('23~'24)
2026 이동훈 기출 e-book
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
TMI 6
나는 여자애들이랑 초딩때부터 거의 안 놀앗다.먼가 재미가 없엇다. 안 놀다보니 계속...
-
국어 낮4 수학 낮2 영어 4(원점수 67) 떴는데 큰일난건가요 일단 중간고사...
-
수능 기하에 대한 고찰 10
기하를 잘한다->그냥 수학을 잘하는 거임 근데 기하를 해야하는 사람은 수학을 잘하는...
-
작수 투투 만점자 이거 먼저 풀고 1번부터 푸네...
-
열역학 표 그려서 풀지 말라고!! 역학도 풀이 체계화 더 시켜야하는데...
-
많이 어려운 시험이에요?
-
엑셀 브릿지 0
엑셀하고 브릿지 각각 시간 몇 분으로 잡고 풀어야 할까요? 엑셀은 공통이랑 선택...
-
보기 처음에 '비현실성'의 정의가 있어요 「저당 잡힌 사내 」에서 내부와 외부의...
-
요즘 생각하는게 14
술알못이랑은 대화가 안뎀
-
TMI 3
사실 난 지금 핸드폰이 맛이 갓다.일단 옆쪽은 흰 줄이 그어져 잇어서 아예 안...
-
오늘 기분이 7
너무 좋아요
-
요즘 전국이 산불로 난리던데 20년 후면 이정도 산불이 일상화될 거임 ㅇㅇ 0
그것이 지구온난화의 최후다..
-
일희일비하지마 2
하지만 그게 쉽지 않지
-
14....
-
책은 너무 두껍고 직접 스캔하긴 귀찮고 이북이 없네
-
으악우 7
으악우
-
23살 1학년 7
23살에 군필 중경외시 공대생이면 나쁘지않죠? 23살에 1학년이면 좀 그럴려나..
-
분명 25문제라했는데 왜 20문제지. 6모부터 적용되려나
-
02이고 대학 2학년 3수 했는데 다 망했음 근데 지금 엄마랑 싸우는 중인데 누나는...
-
밥잠딸공부오르비만 하겟습니다
-
리뷰 써봐도 될까요......
-
고딩친구들과 야구장을 보러갈것인가 대학교친구들과 해오름제를 보러 갈것인가 야구장이 선약이긴함
-
기하이들은 뉴런 많이 하던데 뉴런으로 바꿀까… 그러기엔 매패도 사야되는데… 걍...
-
바자관 할인받으려면 2꼭떠야돠는데 ㅠㅠㅠㅠㅠ 아ㅠㅠㅠㅠ
-
물1 풀이 11
그냥 되게 무난한 편 작년 학평 난이도랑 큰 차이없음
-
재밋다잉
-
하..
-
꼭 모고 당일날에 채점해야만 하는 건 아니겠죠? 채점서비스 이용 가능 기간 언제든...
-
에휴 자자 그냥 12
모두 굿밤하세요
-
억울해억울해
-
아ㅋㅋㅋㅋ 외우기 귀찮다고
-
현장에서 계산 꼬이거나 시간 소모돠면 그냥 N제 벅벅이 맞겠죠?? 의대 및 수학 괴수 조언좀요
-
중대 생공 정도는 쓸 수 있으면 좋겠으련만....
-
[3모 사탐] 사회탐구 분석 – 생윤, 윤사, 정법 2
안녕하세요, 카이스프랙틱 사회탐구 연구소입니다. 우선, 시험을 치르시느라 정말 고생...
-
几何百分 6
-
아 뭐였지 이거 맞나? 아닌거 같은디
-
굿
-
기상시간 취침시간 안정해두고 정말 피곤할 때 7시간 정도 자면 안되나요?
-
준킬러 대비 할수 있으면 좋겠어요
-
오늘 편지 보냄
-
반수생,편입생: 편입티오 대량으로 생겨서 개이득 고3,N수생: 의대정원 늘어나서...
-
현역 3모 9
탐구는 물2화2입니당 국어가 좀 아쉽네여
-
10,14,22 반박은 안받습니다
-
하 1
-
무지성증원해서1차합개많네
-
국어 한지문 단위로 풀때는 시간도 잘 맞추고 정답률도 개높았는데 풀모의고사만 보면...
-
물리학1이라고 자신있게 말할수있음 화학은 잘 모르겟고 ㅇㅇ
-
제목이 모든 평가를 요약했다고 생각합니다. 3모는 그냥 결론만 내자면 "생긴 건...
다호라시절이 떠오르는군요

고인물 어서오소.