괴델의 불완전성 정리 반박+a
게시글 주소: https://orbi.kr/00072540180
불완전성 정리란?
제1정리. 페아노 공리계를 포함하는 어떠한 공리계도 무모순인 동시에 완전할 수 없다. 즉 자연수 체계를 포함하는 어떤 체계가 무모순이라면, 그 체계에서는 참이면서도 증명할 수 없는 명제가 적어도 하나 이상 존재한다.
제2정리. 페아노 공리계가 포함된 어떠한 공리계가 무모순일 경우, 그 공리계로부터 그 공리계 자신의 무모순성을 도출할 수 없다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
불완전성 정리 요약
B="페아노 공리계를 포함하는 어떠한 공리계"
제1정리. B는 무모순인 동시에 완전할수 없다
제2정리. B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 없다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
준비물
모든 논리체계는 명제논리로 나타낼수 있다
명제논리는 무모순성과 완전성이 증명되어있다
명제논리의 무모순성을 증명하는 논리체계 역시 명제논리로 나타낼 수 있다
이말은 명제논리로부터 명제논리 자신의 무모순성을 증명할수 있다는 말임
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제1정리 반박
B는 명제논리로 나타낼 수 있다
따라서 B는 무모순이고 완전하다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제2정리 반박
B는 무모순이고 완전하다
따라서 "B는 무모순"는 참
B를 명제논리로 나타낼 수 있다
명제논리로부터 명제논리 자신의 무모순성을 증명할수 있다
따라서
B(명제논리)로부터 B(명제논리)자신의 무모순성을 증명할수 있다
"B는 무모순" and "B(명제논리)로부터 B(명제논리)자신의 무모순성을 증명할수 있다"
위 명제가 참.
따라서
B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 있다
가 참
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
결론
1. B는 무모순인 동시에 완전하다
2. B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 있다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
괴델의 문제
G="G는 증명불가능"
괴델은 "G가 증명불가능"함을 증명함
그런데 이는 G를 증명한것
G의 내용과 모순
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
완전성 증명
1. (Not A->모순)->(A의 증명있음)
2. (Not A->모순)<->A
3. A->(A의 증명있음)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
공리의 실체
1. (A가 거짓->모순)->(A의 증명있음)
2. (A의 증명없음)->(A가 거짓 and 무모순)
3. (A는 공리)->(A의 증명없음)
4. (A는 공리)->(A가 거짓 and 무모순)
무모순=참
5. (A는 공리)->(A가 거짓)
6. (A가 참)->(A는 공리아님)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
의대생 제적은 현실적으로 가능성이 높지는 않아보이는데 5
해버리면 진짜 집단소송이고 뭐고 무조건 대학측이 이김 ㅋㅋ 오늘 증원 소송...
-
늘어지는 일상에 조이는 보이가 필요해서... 조건은 국수탐 합 백분율 영어등급...
-
시대인재 브릿지 0
보통 몇분안에 풀어야 되나요?
-
ㅅㅂ ㅈ같네
-
ㅇㅇ
-
50렙이 코앞이군 12
킁킁 50렙 냄새가 난다
-
요즘 세상바뀌는 보법이 달라서 따라가지를 못하겠네
-
모평, 학평 백분위 늘 96쁠마로 유지됐고 작수 백분위 92받았는데 미적2틀...
-
도긩이 사고 쳤나 싶었는데 그게 아니고 축구선수 윤도영 얘기였네
-
그게 나야 바 둠바 두비두밥~ ^^
-
모두 성투하시길...
-
또 연애메타네 0
-
내일 수학 질문 받은 거 모아서 FAQ 형식으로 글을 쓸건데 2
그외 궁금한 거 댓 달아주시면 내일 몰아서 답해드리겠습니다
첫번째 댓글의 주인공이 되어보세요.