평균값정리의 역이 항상 성립하는게 아니지 않나요??
게시글 주소: https://orbi.kr/00072512401

06-2번 문제 해설입니다.
문제는 대충 (0,2)에서 평균변화율의 범위를 구하고 그 범위안에 정수가 몇개 있는지 조사하는 문제인데
평균값정리의 역이 성립한다고 가정하고
해설을 써놓아서요
이러면 감으로 풀라는거 아닌가요
x^3같은 함수는 (0,0)에서 도함수의 값이 0이고 어느구간을 잡아도
저 값을 만족시키는 평균변화율을 만들어 낼 수가 없는데
혹시 제가 잘못생각하고 있는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4규 미적 오답률 7~80퍼인데 다음 n제 뭐할까요 3
어그로 ㅈㅅ 정답률 7~80퍼쯤 되는데 다음 n제 뭐할까요 처음 봤을 때 풀이...
-
안녕하세요.. 4
안잉하잉요
-
크캬ㅑㅋ 2
전반사 끝 전자기파 외워야하는데 어케 외움 이걸
-
생각보다 슥슥 풀려서 일주일 안으로 3권 다 끝내는 걸 목표로 해도 ㄱㅊ을 듯 제...
-
https://orbi.kr/0003787754/ 원래는 ㅋ을 6개 연속으로 쓰면...
-
은 다 전국 아닌가요?
-
잉잉
-
작년 이맘때쯤엔 0
이쁜이랑 석촌호수에 갔더라죠 올해는 수학이랑 데이트 오히려좋ㅇㅏ ㅋㅋ
-
나니가~ 스키?
-
수능수학 수리논술 관련 채널임
-
오르비 과외시장 3
탈퇴하거나 접근 할 수 없는 계정이라는데 왜 이러는거?
-
냉전 끝난 직후가 아니었을까 하는 생각이 가끔 듦 공산독재 국가들 훅훅 무너지고...
-
25/04/05 1일차 기본 광질하고 다이아 풀셋 25/04/06 2일차 본격적인...
-
수렴과 발산 0
극한상쇄!
-
당황스러웠음 대체 뭐임?
-
ㅈ 됐 다 !
-
오우 감동인데
-
마 2
내랑 물리 할래
해설에서 쓴 건 그냥 평균값정리 그 자체 아니에요??
문제에서는 평균변화율의 범위를 구하라고 되어있습니다. 집합S = 평균변화율
그런데 해설지에서는 f'(x)의 범위를 구해놓고 이게 평균변화율의 범위랑 동치이다 이러고 있어서
도함수의 범위를 평균변화율의 범위로 동치시킬수가 있냐는게 제 질문입니다
그럴 수 없고 저런 경우 닫힌구간 [a, b] 내에서 함수의 가능한 평균변화율의 범위는 동일 구간 내에서 가능한 미분계수의 범위의 부분집합입니다
선생님 감사합니다
개 벌래같은 해설지ㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉ
해설이 이상하긴 하네요
그춍?