평균값정리의 역이 항상 성립하는게 아니지 않나요??
게시글 주소: https://orbi.kr/00072512401

06-2번 문제 해설입니다.
문제는 대충 (0,2)에서 평균변화율의 범위를 구하고 그 범위안에 정수가 몇개 있는지 조사하는 문제인데
평균값정리의 역이 성립한다고 가정하고
해설을 써놓아서요
이러면 감으로 풀라는거 아닌가요
x^3같은 함수는 (0,0)에서 도함수의 값이 0이고 어느구간을 잡아도
저 값을 만족시키는 평균변화율을 만들어 낼 수가 없는데
혹시 제가 잘못생각하고 있는건가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
리플리 증후군? 9
비갤 보다가 리플리 증후군 ㅈㄴ 많다는걸 깨달음
-
뭐임 3
뇌에 문제가 잇나
-
내가 뭘 그리 잘못했냐 이정도면 그냥 에타가 나를 억까하는거임 눈썹도 추고털로...
-
아님 뭐 여러 슬픈일아니면 안먹음
-
나는 극히 정상
-
현역으로 정시하신 분들 10
학교 수업때 자습하셨나요? 수업들었나요? 쌤들은 자습하면 좀 눈치주시는데 어떡하죠 ㅜ
-
오르비잘자요 6
저는 수행준비하다가 자렵니다
-
그것부터가 기만의 시작인 것임 그냥 기만하지마라 이런 말 할 필요가 없음 인생 자체가 기만인데
-
음악 얘기 보고 ptsd 왓음순간 눈이 뒤집혓음
-
모아보기 근황 3
-
안녕히 9
주무
-
잠이부족해서 그런게 분명
-
11311 11211 12231 작년 69수능입니다 언미화생이에요 올해 25이고...
-
옛날엔 이 시간에도 사람 많았는데
-
뻘글장인 찾아서 함 물어봐야겟음
-
화학하기싫다 8
재미는 있는데 주변에서 다 망했다고 해서 하기 싫어졋어
-
사실 난 웬만하면고 썸이라고 생각을 잘안함 나 혼자 오해하는 거면 어캄 ㅋㅋ
-
함부로 생각하면 안 되긴 함 딱 하나의 사건만으로도 사람 자체가 급변할 수 잇는건데...
-
남자면 좋은 점 4
분신이 잇음
해설에서 쓴 건 그냥 평균값정리 그 자체 아니에요??
문제에서는 평균변화율의 범위를 구하라고 되어있습니다. 집합S = 평균변화율
그런데 해설지에서는 f'(x)의 범위를 구해놓고 이게 평균변화율의 범위랑 동치이다 이러고 있어서
도함수의 범위를 평균변화율의 범위로 동치시킬수가 있냐는게 제 질문입니다
그럴 수 없고 저런 경우 닫힌구간 [a, b] 내에서 함수의 가능한 평균변화율의 범위는 동일 구간 내에서 가능한 미분계수의 범위의 부분집합입니다
선생님 감사합니다
개 벌래같은 해설지ㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉㅉ
해설이 이상하긴 하네요
그춍?