[칼럼] y절편을 줬으니까 좌표를 쓰는게 맞다니까?
게시글 주소: https://orbi.kr/00072509242
아님.
정확하게 말하자면 좌표계를 이쁘게 그려서 문제를 접근하는게 아님.
물론 기본적으로 좌표평면에 나타낸 지수로그 문제니까 좌표계의 툴을 이용하긴 하는데, 이쁘게 로그함수 2개 그리고 직선의 방정식 잡고 난리를 피우는 문제는 아님.
어떻게 접근해야 하는가? 우리가 이미 귀에 못이 박히도록 들었던 지수 로그함수의 기본인 비율관계에 집중한다면 암산도 충분히 가능한 문제임.
문제를 보자면 y=log_2(x) 위에 두 점, y=log_4(x) 위에 두 점을 각각 잡아놓았는데, 아무리 공부가 부족한 학생이라도 log_4를 그대로 두진 않았을거임. 4=2^2니까 log_4가 아니라 1/2log_2로 보여야 됨.
그러면 몬가 우리가 좋아하는 비율관계가 등장한 거 같은데, 그 다음으로 오는 조건이 뜬금 없어보임. 두 점을 이은 직선끼리의 y 절편이 서로 같다.
그러면 y 절편 기준으로 직선을 그어야 하는데? 비?율관계 써먹기가 되게 까다로워 보임. 자고로 좌표계에서 비율관계라 함은 그 근본이 원점이 되어야 할텐데, 직선끼리의 교점이 저래서야 비율관계 제대로 나타내기가 어려워 보이니 이 단계에서 ㅈㅈ치고 열심히 식 세워서 풀다가 y 절편이 원점 나와서 허탈해 한 학생이 많았을 거 같음.
그럼에도 불구하고 이 문제가 '수능'에 출제된 지수로그 함수 문제라면 이걸 단순한 계산으로 밀어서 풀게 두진 않았을거임. 단순 계산은 2-3점 문제로도 차고넘치게 있으니까 우리는 여기서도 사고를 통해 과도한 계산을 피하는 방법으로 끊임 없이 생각을 해야 됨.
문제에서 주목해야 될 부분은 y 절편이 맞긴함. 그런데 단순히 y절편이 같다고 해서 (0, c) 잡고 직선의 방정식 세우지 말고, y 절편의 가장 큰 특징인 x 좌표가 0이 보장된다는 것을 떠올리면 우리는 문제에 제시된 두 직선에 대해서, 구간 [a, b]와 구간 [0, a]로 나눠서 관찰해야겠다는 느낌이 올거임. 또한 같은 직선을 구간을 나눠 관찰할 때는 서로 공통되는 요소인 기울기에 집중해야 한다는 점까지 끼얹으면 다음과 같이 사고를 전개할 수 있음.
그러면 문제는 끝났음.
이렇게 언제나 문제의 핵심이 되는 요소에 집중하면, 지수로그함수의 경우에는 비율관계와 좌표계의 룰에 대해 생각을 하고 풀이를 전개한다면 산수를 벗어나 진짜 '수학' 문제를 풀 수 있음.
결론)
비율관계
기울기
다이스키사
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
김동욱 커리 타고 있긴 한데 강민철이 평가가 좋다더라구요 내신+수능 겸용으로 하려고...
-
아니 그럴 수도 있잖아 그게 아니면 이렇게 진을 잘하는게 설명이 안됨
-
0.5배 이상 나나
-
고2 정시파이터고 수업시간에 브릿지나 써킷 풀려하는데 몇분정도 재고 푸는게...
-
일요일에 잇올 0
지금가도 늦어서 못들어가니깐 좀더 쉬다 가야징~
-
검고합격 그리고 0
선택과목 정했음 07인데 이제정함 ㅋㅋㅋㅋ 언미생지 갑니다…. 재수지원 해주신다...
-
욕심이겠지 잘 가르칠 자신은 있는데
-
학생정신주입봉
-
님들 이거 나중에 정시 과외할 때 써먹을 수 있음? 3
한다면 국어 정시 과외 하고 싶은데 어머님 저도 공부를 못하는 아이였습니다 계속...
-
넵
-
https://www.snsmatch.com/news.php?server=new&ne...
-
그럴 때는 로또를 사서 이것만 되면 공부안해도 된다는 기대감을 품고 있으라하심...
-
날씨 따뜻하다 6
잠이온다
-
2시까지라도 잇올 가야겠네 ㅠ
-
물론 손실보상,경합,헌정사,과징금,인허가의제 같이 노잼중의 노잼만 공부하는 헌법...
-
흔한가요
-
하.......오늘은 꼭 이겼으면 좋겠네
-
거절하고 나옴 호감많이쌓였겠지 히히 그리고 수학 4등급에서 만점권까지 올린게 엄청...
-
제발 꼭 하고 싶어
-
수능 국어 지문 여러 개 올려놓고 이런 식으로 글 써 "줘" 하면 지문 뚝딱일 듯
-
획통 과탐으로 의대 뚫리나요? 과탐은 아슬아슬하긴 한데 1이 뜨긴 합니다 국어는...
-
미친개념 완강, 수분감 수1 끝, 수2랑 확통은 하는중../6모 전까지 확통은...
-
학사졸업인데 대기업에 쌩신입으로 입사하기 가능할까요? 요즘 공대도 취업이 힘들다고...
-
해설을 어카지 챗gpt보고 써달라고 해볼까
-
past and future cant change the past
-
김승리 김동욱 4
자퇴생이고 내년 수능까지 보고 있어요 이번년도 김동욱 수국김, 스위치온, 일클,...
-
제 자녀이름을 하니로 할건데 한자를 모르겠어요
-
종강안하나 0
할때됐는데
-
네 저는 나약한 것입니다 고2때 모고는 다 백분위 98정도에 이번 3모 좀 많이...
-
벚꽃이쁘다 10
-
차라리 N제 1권이라도 더 볼까요 어삼쉬사 난이도 많이 풀고싶은데 강사들 입문 N제를 풀까
-
딸 이름 정함 17
으흐흐
-
4번 연속 다른 감기
-
2기가 넷플 독점이었는데 1기3기가 내려가면서 2기까지 삭제 된거구나.... 2기...
-
나만 어려움...? 작년엔 술술 푼 기억이 나는데 지금 수1 1강 풀었는데 앞에도...
-
오른쪽이
-
시즌3는 존나어려운데 시즌4는 할만한거같음 전반적으로 드릴3가 드릴4보다...
-
높은 확률로 저보다 수학 잘하십니다. 적정시간은 50~70분입니다. 애초에 선택이...
-
OVS의 약자는 Over victory ebs 즉 승리를 뛰어넘는 ebs로...
-
김과외에 후기 6명 받고 수수료도 꼬박꼬박 내서 4레벨인데… 여전히 과외는 발품...
-
식물샵 가는중 4
룰루
-
[동양철학] 지각에 대한 김창협의 주장(p.25) : 22-7, 19-6 격물치지에...
-
다음화 내용이 줄거리가..... 1기로 끝나는 내용인가
-
이제 진짜 잔다 1
ㅂㅂ
-
띰 6듣는 허수인데 기출 같이 병행중이거든요 근데 원래 같으면 못푸는 문제...
-
얼버기 3
-
진짜 발상 하나는 최고들이네 ㅋㅋㅋ
-
예를들어 미적풀때 기하 시험지에 있는 여백을 연습장처럼 사용해도 될까요?
-
강의량이 진짜 엄청많네..
22수능 13번
ㅇㅇㅇ
스크랩.
다이스키
진짜 급할 때 쓰는법
선생님 이 문제가 급한 친구들은 그런 발상 못합니다...
아아아앗
현장에서 일단 일케했는데 십 ㅋㅋ

지수 성질을 극한까지 뽑아내기머리를 비틀면 계산을 덜하게 된다.
계산을 더 하면 머리가 편해진다?
그러네?
국어에서 중요한 관계파악이 다른 과목에서도 쓰이는 케이스
제발 국어해라..