최신 증명 Ver 2.2.2
게시글 주소: https://orbi.kr/00072493574
불완전성 정리
제1정리. 페아노 공리계를 포함하는 어떠한 공리계도 무모순인 동시에 완전할 수 없다. 즉 자연수 체계를 포함하는 어떤 체계가 무모순이라면, 그 체계에서는 참이면서도 증명할 수 없는 명제가 적어도 하나 이상 존재한다.
제2정리. 페아노 공리계가 포함된 어떠한 공리계가 무모순일 경우, 그 공리계로부터 그 공리계 자신의 무모순성을 도출할 수 없다.
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
명제논리의 일종인 NAND게이트의 조합으로 모든 논리를 구현가능하다
실제로 논리게이트로 이루어진 컴퓨터상의 프로그램으로 1차논리 및 고차논리 등등을 구현할수 있다
그리고,
명제논리는 완전성과 무모순성이 증명되어있다
명제논리의 무모순성을 증명하는 메타논리 역시 명제논리의 조합으로 구현할수 있다
즉, 명제논리의 무모순성은 명제논리 스스로로부터 증명될수 있다
명제논리로 모든 논리를 구현가능하고 명제논리가 완전하고 무모순이라면 모든논리는 완전하고 무모순이다
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제1정리에 대한 반박
"페아노 공리계를 포함하는 어떠한 공리계"= B
제1정리는
"B가 무모순인 동시에 완전할수 없다"고 한다
하지만 B는 명제논리로 구현할수 있고, 명제논리는 무모순이고 완전하다
따라서 "B는 무모순이면서 완전하다"
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
제2정리에 대한 반박
제2정리는
"B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 없다" 고 한다
위에서
"B는 무모순이면서 완전하다"
"명제논리의 무모순성은 명제논리 스스로로부터 증명될수 있다"
B는 명제논리로 구현됨
따라서
"B가 무모순이면 B로부터 B자신의 무모순성을 증명할수 있다" 가 됨
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
괴델의 문제
G="G는 증명불가능"
괴델은 "G가 증명불가능"함을 증명함
그런데 이는 G를 증명한것
G의 내용과 모순
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
공리의 실체
1. (A가 거짓->모순)->(A의 증명있음)
2. (A의 증명없음)->(A가 거짓 and 무모순)
3. (A는 공리)->(A의 증명없음)
4. (A는 공리)->(A가 거짓 and 무모순)
무모순=참
5. (A는 공리)->(A가 거짓)
6. (A가 참)->(A는 공리아님)
ㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡㅡ
완전성 증명
1. (Not A->모순)->(A의 증명있음)
2. (Not A->모순)<->A
3. A->(A의 증명있음)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4개월 안으로 중경외시 0 0
4개월 안으로 중경외시 ㄱㄴ 할까여,, 현역 수능은 44354...
-
낮2인데 n제 뭐 풀까요? 0 0
스블 끝내고 카나토미 절반 정도 풀었는데 허들링 전에 n제 하나 정도는 풀어야 할...
-
물2 공부할 때 13 1
벡터에 대해 잘 이해하고 있으면 좋은거 같아요! 물리에서 중요한 관점은 운동을...
-
심찬우도 ㅈㄴ 역겨움 18 11
그 얼굴로 배우를 하라고 ㅅㅂ
-
침대모기장설치완료 14 3
이제 전 무적이에여
-
집가는 길에 고양이 발견 2 0
사진 찍고싶었는데 튀어버림...소심한 아이구나
-
고대 4합7 과탐 필수 -> 4합8 사탐 가능 14 0
이거 차이 클까요? 왜 하필 올해부터 바뀐건지:; 하하하하하하
-
킬캠도형도 얘 앞에서는 눈 깔아야함
-
서준혁(박준호) goat 2 0
ㅈㄴ좋음
-
스카에서 지랄들을 한다 10 1
조 ㅗ용히좀 해 시발
-
무한 우주에 순간의 빛일지라도 16 4
-
국어잘하고싶다 3 0
ㄹㅇ
-
오늘 인생 첫 현강 듣고옴 9 1
가서 손승연모의고사 1회를 풀었고 강X 시즌1을 받았음 1컷이 78이라는데 85점을...
-
왕복 한시간인데 자취는 돈낭빈가
아직도 살아있네
왜요
엄준식